This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335630 #25 Oct 03 2020 04:05:40 %S A335630 1,1,2,14,64,616,5072,58064,669184,9417856,137019392,2294104064, %T A335630 40350383104,778782954496,16050760435712,352024447115264, %U A335630 8269739647565824,204097141026881536,5360540853755052032,147190808628196081664,4270498402940171321344,129024432217526266494976 %N A335630 Expansion of e.g.f. Product_{k>0} (1+tan(x)^k). %H A335630 Vaclav Kotesovec, <a href="/A335630/b335630.txt">Table of n, a(n) for n = 0..200</a> %F A335630 E.g.f.: exp( Sum_{k>0} (-tan(x))^k/(k*(tan(x)^k-1)) ). %t A335630 nmax = 25; CoefficientList[Series[Product[1 + Tan[x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Oct 03 2020 *) %o A335630 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(eta(tan(x)^2)/eta(tan(x)))) %o A335630 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+tan(x)^k))) %o A335630 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, (-tan(x))^k/(k*(tan(x)^k-1)))))) %Y A335630 Cf. A000009, A000182, A335627, A335629. %K A335630 nonn %O A335630 0,3 %A A335630 _Seiichi Manyama_, Oct 02 2020