This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335635 #23 Oct 04 2020 08:46:57 %S A335635 1,1,3,10,44,215,1252,7992,56024,438341,3672328,32587366,318586880, %T A335635 3325053147,35115462592,407034567076,5198294627456,63965057355305, %U A335635 824995119961984,12611299833296898,184189806819806720,2590874864719588031,44912343151409875456,728583107189913021328,11458864344772729650176 %N A335635 Expansion of e.g.f. Product_{k>0} 1/(1 - sin(x)^k / k). %C A335635 a(30) is negative. %H A335635 Seiichi Manyama, <a href="/A335635/b335635.txt">Table of n, a(n) for n = 0..400</a> %F A335635 E.g.f.: exp( Sum_{i>0} Sum_{j>0} sin(x)^(i*j)/(i*j^i) ). %t A335635 max = 24; Range[0, max]! * CoefficientList[Series[Product[1/(1 - Sin[x]^k/k), {k, 1, max}], {x, 0, max}], x] (* _Amiram Eldar_, Oct 03 2020 *) %o A335635 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, 1-sin(x)^k/k))) %o A335635 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, sin(x)^(i*j)/(i*j^i)))))) %Y A335635 Cf. A007841, A335626, A335636, A335637, A335642. %K A335635 sign %O A335635 0,3 %A A335635 _Seiichi Manyama_, Oct 03 2020