cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335637 Expansion of e.g.f. Product_{k>0} (1 + sin(x)^k / k).

This page as a plain text file.
%I A335637 #18 Oct 04 2020 06:57:49
%S A335637 1,1,1,4,10,25,210,978,2336,25265,361424,1557752,-1098528,140915385,
%T A335637 2093367328,10484632486,133131785728,-1343478380255,-8738565516288,
%U A335637 1790935681747980,3245598828836864,-592809746388403495,6832010190766985216,179327221659613996634,-5310378915096702812160
%N A335637 Expansion of e.g.f. Product_{k>0} (1 + sin(x)^k / k).
%F A335637 E.g.f.: exp( Sum_{i>0} Sum_{j>0} (-1)^(i+1)*sin(x)^(i*j)/(i*j^i) ).
%t A335637 max = 24; Range[0, max]! * CoefficientList[Series[Product[1 + Sin[x]^k/k, {k, 1, max}], {x, 0, max}], x] (* _Amiram Eldar_, Oct 03 2020 *)
%o A335637 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+sin(x)^k/k)))
%o A335637 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, (-1)^(i+1)*sin(x)^(i*j)/(i*j^i))))))
%Y A335637 Cf. A007838, A335629, A335635, A335638, A335644.
%K A335637 sign
%O A335637 0,4
%A A335637 _Seiichi Manyama_, Oct 03 2020