This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335642 #19 Oct 04 2020 08:47:55 %S A335642 1,1,3,9,35,147,710,3780,21391,136063,932190,6887232,55902274, %T A335642 497726270,4711586833,47692742905,528539419087,6093676850975, %U A335642 73010887114406,943925266298096,12740929019736310,175037826035276730,2561985529052306447,39817440376814520907,622315443336146270858 %N A335642 Expansion of e.g.f. Product_{k>0} 1/(1 - sin(x)^k / k!). %C A335642 a(74) is negative. - _Vaclav Kotesovec_, Oct 04 2020 %F A335642 E.g.f.: exp( Sum_{i>0} Sum_{j>0} sin(x)^(i*j)/(i*(j!)^i) ). %t A335642 max = 24; Range[0, max]! * CoefficientList[Series[Product[1/(1 - Sin[x]^k/k!), {k, 1, max}], {x, 0, max}], x] (* _Amiram Eldar_, Oct 04 2020 *) %o A335642 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, 1-sin(x)^k/k!))) %o A335642 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, sin(x)^(i*j)/(i*j!^i)))))) %Y A335642 Cf. A005651, A335626, A335635, A335643, A335644. %K A335642 sign %O A335642 0,3 %A A335642 _Seiichi Manyama_, Oct 03 2020