This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335651 #28 Jun 18 2020 03:24:01 %S A335651 1,5,14,35,74,150,280,505,875,1470,2402,3850,6034,9300,14120,21131, %T A335651 31220,45619,65930,94374,133892,188350,262904,364350,501459,685762, %U A335651 932200,1259944,1693750,2265380,3015152,3994585,5268988,6920700,9053748,11798873,15319610,19820738,25557560 %N A335651 a(n) is the sum, over all overpartitions of n, of the non-overlined parts. %H A335651 K. Bringmann, J. Lovejoy, and R. Osburn, <a href="https://doi.org/10.1016/j.jnt.2008.10.017">Rank and crank moments for overpartitions</a>, Journal of Number Theory, 129 (2009), 1758-1772. %F A335651 G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) * Sum_{n>=1} n*q^n/(1-q^n). %F A335651 a(n) = A235793(n) - A335666(n). - _Omar E. Pol_, Jun 17 2020 %e A335651 The 8 overpartitions of 3 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 14. %o A335651 (PARI) my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, k*q^k/(1-q^k)) ) \\ _Joerg Arndt_, Jun 18 2020 %Y A335651 Cf. A015128, A230441, A235790, A235792, A235793, A235798, A236000, A236001, A237047, A335666. %Y A335651 Cf. A305102 (number of non-overlined parts). %K A335651 nonn %O A335651 1,2 %A A335651 _Jeremy Lovejoy_, Jun 17 2020