This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335653 #33 Jan 22 2022 23:41:59 %S A335653 3,2,7,3,11,3,5,7,19,3,5,7,17,11,13,23,37,3,5,7,43,11,13,43,17,19,37, %T A335653 23,41,43,29,31,67,3,5,7,89,11,13,71,17,19,1109,23,73,83,29,31,101,67, %U A335653 37,71,41,43,101,47,97,83,53,103,89,59,61,383,131,3,5,7,139,11,13,139,17,19,151,23 %N A335653 Smallest prime whose binary expansion has Hamming distance 1 from 2n+1, or 0 if no such prime exists. %C A335653 If 2n+1 is a dual Sierpiński number, and if 2n+1 cannot be made prime by flipping any of the ones in its binary representation to zero, then a(n) = 0. %C A335653 2131099 is Sierpiński, and it is conjectured that the Sierpiński numbers are the same as the dual Sierpiński numbers. Furthermore 2131099 is the smallest Sierpiński number whose binary representation has the property stated above. If the dual Sierpiński conjecture holds, and if A076336 is complete up to 2131099, then a(1065549) = 0 and this is likely the first 0 in the sequence. %C A335653 From _Robert Israel_, Jul 08 2020: (Start) %C A335653 Every prime is in the sequence. %C A335653 Proof: Since 2 = a(1), we may assume prime p is odd. Take k so 2^k > p, and consider 2n+1 = p + 2^k. Then p has Hamming distance 1 from 2n+1. On the other hand, if q < p is prime, then q + 2^j < p + 2^k if j <= k while q + 2^j >= q + 2*2^k > p + 2^k if j > k, so q can't be at Hamming distance 1 from 2n+1. Thus p = a(n). (End) %H A335653 Robert Israel, <a href="/A335653/b335653.txt">Table of n, a(n) for n = 0..2234</a> %H A335653 MathOverflow, <a href="https://mathoverflow.net/questions/363083/hamming-distance-to-primes/">Hamming Distance to Primes</a> %F A335653 a((p+2^k-1)/2) = p if p is an odd prime and 2^k > p-3. - _Robert Israel_, Jun 16 2020 %e A335653 For n = 4, 2n+1 = 1001_2, and the smallest prime with Hamming distance 1 is 1011_2 = 11. %p A335653 f:= proc(n) local L, nL, k, v; %p A335653 L:= convert(n, base, 2); %p A335653 nL:= nops(L); %p A335653 for k from nL to 1 by -1 do %p A335653 if L[k] = 1 then %p A335653 v:= n - 2^(k-1); %p A335653 if isprime(v) then return v fi; %p A335653 fi %p A335653 od; %p A335653 for k from 1 to nL do %p A335653 if L[k] = 0 then %p A335653 v:= n + 2^(k-1); %p A335653 if isprime(v) then return v fi; %p A335653 fi %p A335653 od; %p A335653 for k from nL+1 do %p A335653 v:= n+2^(k-1); %p A335653 if isprime(v) then return v fi; %p A335653 od %p A335653 end proc: %p A335653 map(f, [seq(i, i=1..200, 2)]); # _Robert Israel_, Jun 15 2020 %t A335653 a[n_Integer] := a[IntegerDigits[2 n + 1, 2]]; %t A335653 a[bin_List] := Module[{flips, primes}, %t A335653 flips = %t A335653 Sort[FromDigits[bin, %t A335653 2] + (1 - 2 bin) Power[2, Length[bin] - Range[Length[bin]]]]; %t A335653 primes = Select[flips, PrimeQ]; %t A335653 If[Length[primes] >= 1, First[primes], %t A335653 a[FromDigits[bin, 2], Length[bin]]] %t A335653 ]; %t A335653 a[n_Integer, k_Integer] := %t A335653 Module[{test = n + Power[2, k]}, test /; PrimeQ[test]]; %t A335653 a[n_Integer, k_Integer] := a[n, k + 1]; %t A335653 Table[a[n],{n,0,50}] %o A335653 (PARI) a(n) = my(p=2); while(norml2(binary(bitxor(p, 2*n+1))) != 1, p = nextprime(p+1)); p; \\ _Michel Marcus_, Jun 16 2020 %Y A335653 Cf. A067760, A076336. %K A335653 nonn,base,look %O A335653 0,1 %A A335653 _Ross Dempsey_, Jun 15 2020