This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335670 #20 Nov 23 2023 12:03:05 %S A335670 9,85,161,341,705,897,901,1105,1281,1853,2465,2737,3745,4181,4209, %T A335670 4577,5473,5611,5777,6119,6721,9701,9729,10877,11041,12209,12349, %U A335670 13201,13481,14981,15251,16185,16545,16771,19669,20591,20769,20801,21845,23323,24465,25345 %N A335670 Odd composite integers m such that A014448(m) == 4 (mod m). %C A335670 If p is a prime, then A014448(p)==4 (mod p). %C A335670 This sequence contains the odd composite integers for which the congruence holds. %C A335670 The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1. %C A335670 For a=4, b=-1, V(n) recovers A014448(n) (even Lucas numbers). %D A335670 D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020). %H A335670 Chai Wah Wu, <a href="/A335670/b335670.txt">Table of n, a(n) for n = 1..1000</a> %H A335670 D. Andrica and O. Bagdasar, <a href="https://repository.derby.ac.uk/item/92yqq/on-some-new-arithmetic-properties-of-the-generalized-lucas-sequences">On some new arithmetic properties of the generalized Lucas sequences</a>, preprint for Mediterr. J. Math. 18, 47 (2021). %e A335670 9 is the first odd composite integer for which A014448(9)=439204==4 (mod 9). %p A335670 M:= <<4|1>,<1|0>>: %p A335670 f:= proc(n) uses LinearAlgebra:-Modular; %p A335670 local A; %p A335670 A:= Mod(n,M,integer[8]); %p A335670 A:= MatrixPower(n,A,n); %p A335670 2*A[1,1] - 4*A[1,2] mod n; %p A335670 end proc: %p A335670 select(t -> f(t) = 4 and not isprime(t), [seq(i,i=3..10^5,2)]); # _Robert Israel_, Jun 19 2020 %t A335670 Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[LucasL[3#] - 4, #] &] (* _Amiram Eldar_, Jun 18 2020 *) %Y A335670 Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335671 (a=5). %K A335670 nonn %O A335670 1,1 %A A335670 _Ovidiu Bagdasar_, Jun 17 2020 %E A335670 More terms from _Jinyuan Wang_, Jun 17 2020