This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335709 #18 Sep 08 2022 08:46:25 %S A335709 1,2,4,6,81,12,-1,24,36,48,59049,60,-1,192,144,120,43046721,180, %T A335709 43472473122830653562489222659449707872441,240,576,3072, %U A335709 191540580003116921429323712183642218614831262597249,360,1296,94208,900,960,-1,720,-1,840,9216,720896,5184,1260 %N A335709 a(n) is the smallest Niven number that has exactly n divisors or -1 if no such number exists. %C A335709 If n is a prime number, then a(n) has the form p^(n-1), where p is a prime number such that p <= 9 * ((n-1) * log_10(p) +1). %C A335709 For p <= 9 * ((n-1) * log_10 (p) +1), if there is no s >= 1 such that digsum(p^(n-1)) = p^s, then a(n) = -1. For example, for n = 7, the largest prime number p verifying p <= 9 * (6 * log_10 (p) +1) is 113, but no prime number q <= 113 has the property digsum(q^6) = q^s, for 1 <= s <= 6. Thus, a(7) = -1. %e A335709 The number 81 = 3^4 is the smallest with 5 divisors and is a Niven number, so a(5) = 81. %o A335709 (Magma) niven:=func<n|n mod &+Intseq(n) eq 0 >; a:=[]; for n in [1..36] do if not IsPrime(n) then k:=1; while not niven(k) or #Divisors(k) ne n do k:=k+1; end while; Append(~a,k); else q:=2; while not niven(q^(n-1)) and q le (9*(n-1)*Log(10,q)+9) do q:=NextPrime(q); end while; if niven(q^(n-1)) then Append(~a,q^(n-1)); else Append(~a,-1); end if; end if; end for; a; %Y A335709 Cf. A000005, A005349, A007953. %K A335709 sign,base %O A335709 1,2 %A A335709 _Marius A. Burtea_, Aug 04 2020