cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A268371 Triangle read by rows: T(n,k) is the number of free polyominoes with width n and height 1<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 6, 24, 1, 12, 181, 1051, 1, 30, 941, 21992, 238048, 1, 65, 4662, 228013, 9735647, 195284973, 1, 158, 23691, 2337694, 195616247, 15256715219, 577169894573
Offset: 1

Views

Author

John Mason, Feb 03 2016

Keywords

Comments

Superset of Craig Knecht's A268311.

Examples

			The first rows of the array are:
1;
1, 2;
1, 6, 24;
1, 12, 181, 1051;
...
T(4,3)=181 = 15+39+59+42+21+4+1: In the 4x3 square fit 15 6-ominoes, 39 7-ominoes, 59 8-ominoes, 42 9-ominoes, 21 10-ominoes, 4 11-ominoes or 1 12-omino. - _R. J. Mathar_, Jun 07 2020
		

Crossrefs

Cf. A268311 (right diagonal), A335711 (column n=2), A000105 (free polyominoes), A292357 (equival. for fixed polys).

Extensions

a(16)-a(28) from Jean-Luc Manguin, May 25 2020

A352720 a(n) is the number of free polyominoes of width 2 and size n.

Original entry on oeis.org

1, 1, 4, 5, 12, 18, 37, 60, 117, 200, 379, 669, 1250, 2247, 4168, 7570, 13987, 25549, 47108, 86319, 158978, 291806, 537105, 986786, 1815699, 3337560, 6140047, 11289571, 20767180, 38189927, 70246680, 129191148, 237627757, 437042337, 803861244, 1478488577, 2719392160, 5001663330, 9199544069
Offset: 2

Views

Author

John Mason, Mar 31 2022

Keywords

Examples

			There is one polyomino, the domino, of width 2 and size 2. So a(2) = 1.
There is one tromino, L-shaped, of width 2. So a(3) = 1.
		

Crossrefs

Formula

For a set of recursive formulas to generate a(n), see the link for the Java program extract.

A336267 Number of free polyominoes of width 3 and height n.

Original entry on oeis.org

1, 6, 24, 181, 941, 4662, 23691, 119271, 603760, 3050402, 15428576, 78004550, 394462578, 1994595585, 10086050889, 51001111356, 257894037378, 1304071170194, 6594196094078, 33344335235915, 168609627579175, 852594638783225, 4311246376730011
Offset: 1

Views

Author

Jean-Luc Manguin, Jul 15 2020

Keywords

Comments

The sequence can be generated using a series of recursive formulas in a fashion similar to A353067. - John Mason, Nov 04 2022

Examples

			a(2)=6, bounding box 2 X 3 as in A335711.
		

Crossrefs

Extensions

More terms from John Mason, Nov 04 2022
Showing 1-3 of 3 results.