This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335712 #20 Mar 03 2021 21:50:56 %S A335712 1,1,2,6,12,27,54,115,237,486,997,2030,4122,8350,16881,34054,68609, %T A335712 138052,277500,557328,1118546,2243589,4498004,9014053,18058159, %U A335712 36166338,72415886,144970116,290170091,580721926,1162077483,2325206168,4652155420,9307199819 %N A335712 The sum of the sizes of the minimal fixed points over all compositions of n. %D A335712 M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences. %H A335712 Alois P. Heinz, <a href="/A335712/b335712.txt">Table of n, a(n) for n = 1..500</a> %H A335712 M. Archibald, A. Blecher, and A. Knopfmacher, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Blecher/arch14.html">Fixed Points in Compositions and Words</a>, J. Int. Seq., Vol. 23 (2020), Article 20.11.1. %F A335712 G.f.: Sum_{j>=1} (Product_{i=1..j-1} (x/(1-x)-x^i)) j x^j (1-x)/(1-2x). %e A335712 Example: For n=3 the a(3)=2 values are the first 1s in 111 and 12 (the other compositions 21 and 3 do not have any fixed points). %o A335712 (PARI) my(N=44,x='x+O('x^N)); Vec( sum(j=1, N, prod(i=1, j-1, (x/(1-x)-x^i) ) *j*x^j * (1-x)/(1-2*x) ) ) \\ _Joerg Arndt_, Jun 18 2020 %Y A335712 Cf. A099036, A335713, A335714. %K A335712 nonn %O A335712 1,3 %A A335712 _Margaret Archibald_, Jun 18 2020 %E A335712 a(21)-a(34) from _Alois P. Heinz_, Jun 18 2020