cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335712 The sum of the sizes of the minimal fixed points over all compositions of n.

This page as a plain text file.
%I A335712 #20 Mar 03 2021 21:50:56
%S A335712 1,1,2,6,12,27,54,115,237,486,997,2030,4122,8350,16881,34054,68609,
%T A335712 138052,277500,557328,1118546,2243589,4498004,9014053,18058159,
%U A335712 36166338,72415886,144970116,290170091,580721926,1162077483,2325206168,4652155420,9307199819
%N A335712 The sum of the sizes of the minimal fixed points over all compositions of n.
%D A335712 M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.
%H A335712 Alois P. Heinz, <a href="/A335712/b335712.txt">Table of n, a(n) for n = 1..500</a>
%H A335712 M. Archibald, A. Blecher, and A. Knopfmacher, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Blecher/arch14.html">Fixed Points in Compositions and Words</a>, J. Int. Seq., Vol. 23 (2020), Article 20.11.1.
%F A335712 G.f.: Sum_{j>=1} (Product_{i=1..j-1} (x/(1-x)-x^i)) j x^j (1-x)/(1-2x).
%e A335712 Example: For n=3 the a(3)=2 values are the first 1s in 111 and 12 (the other compositions 21 and 3 do not have any fixed points).
%o A335712 (PARI) my(N=44,x='x+O('x^N)); Vec( sum(j=1, N, prod(i=1, j-1, (x/(1-x)-x^i) ) *j*x^j * (1-x)/(1-2*x) ) ) \\ _Joerg Arndt_, Jun 18 2020
%Y A335712 Cf. A099036, A335713, A335714.
%K A335712 nonn
%O A335712 1,3
%A A335712 _Margaret Archibald_, Jun 18 2020
%E A335712 a(21)-a(34) from _Alois P. Heinz_, Jun 18 2020