This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335713 #16 Mar 03 2021 21:51:04 %S A335713 1,1,3,7,16,34,73,155,324,674,1393,2861,5852,11929,24239,49127,99360, %T A335713 200598,404377,814135,1637363,3290067,6605980,13255451,26583994, %U A335713 53290694,106787166,213919062,428415074,857794856,1717201360,3437092882,6878672565,13764822699 %N A335713 The sum of the sizes of the largest fixed points over all compositions of n. %D A335713 M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences. %H A335713 Alois P. Heinz, <a href="/A335713/b335713.txt">Table of n, a(n) for n = 1..500</a> %H A335713 M. Archibald, A. Blecher, and A. Knopfmacher, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Blecher/arch14.html">Fixed Points in Compositions and Words</a>, J. Int. Seq., Vol. 23 (2020), Article 20.11.1. %F A335713 G.f.: Sum_{j>=1} (x/(1-x))^(j-1) j x^j Sum_{k>=j} Product_{i=j+1..k} (x/(1-x) - x^i). %e A335713 For n=3 the a(3)=3 values are the first 1 in the composition 111 and the 2 in the composition 12 (the compositions 21 and 3 do not have any fixed points). %Y A335713 Cf. A099036, A335712, A335714. %K A335713 nonn %O A335713 1,3 %A A335713 _Margaret Archibald_, Jun 18 2020 %E A335713 a(21)-a(34) from _Alois P. Heinz_, Jun 18 2020