This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335714 #16 Mar 03 2021 21:51:10 %S A335714 1,1,4,8,19,41,89,189,398,830,1719,3539,7251,14797,30096,61044,123531, %T A335714 249501,503117,1013165,2037986,4095546,8223919,16502823,33097639, %U A335714 66349021,132954724,266337584,533388643,1067965265,2137907009,4279099869,8563658486,17136379382 %N A335714 The sum of the sizes (positions) of fixed points over all compositions of n. %D A335714 M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences. %H A335714 M. Archibald, A. Blecher, and A. Knopfmacher, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Blecher/arch14.html">Fixed Points in Compositions and Words</a>, J. Int. Seq., Vol. 23 (2020), Article 20.11.1. %F A335714 G.f.: x*(1-x)^3/((1-2*x)*(1-x-x^2)^2). %e A335714 For n=3 the a(3)=4 values are the first 1 in the composition 111 and both values in the composition 12 (the compositions 21 and 3 have no fixed points). %o A335714 (PARI) Vec((x*(1-x)^3)/((1-2*x)*(1-x-x^2)^2) + O(x^40)) \\ _Michel Marcus_, Jun 18 2020 %Y A335714 Cf. A099036, A335712, A335713. %K A335714 nonn,easy %O A335714 1,3 %A A335714 _Margaret Archibald_, Jun 18 2020 %E A335714 More terms from _Michel Marcus_, Jun 18 2020