This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335724 #13 Jun 20 2020 09:18:49 %S A335724 2,6,12,26,44,84,136,230,366,580,884,1356,2012,2968,4320,6226,8856, %T A335724 12522,17508,24324,33528,45892,62392,84372,113374,151548,201552, %U A335724 266752,351380,460920,601992,783158,1014984,1310600,1686408,2162814,2764748,3523324,4476720,5671748 %N A335724 a(n) is the number of smallest parts in the overpartitions of n. %H A335724 K. Bringmann, J. Lovejoy, and R. Osburn, <a href="https://doi.org/10.1016/j.jnt.2008.10.017">Rank and crank moments for overpartitions</a>, Journal of Number Theory, 129 (2009), 1758-1772. %H A335724 K. Bringmann, J. Lovejoy, and R. Osburn, <a href="https://doi.org/10.1093/imrn/rnp131">Automorphic properties of generating functions for generalized rank moments and Durfee symbols</a>, International Mathematics Research Notices, (2010), 238-260. %F A335724 G.f.: 2*(Product_{k>=1} (1+q^k)/(1-q^k))*Sum_{n>=1} (q^n*Product_{j=1..n}(1-q^j))/((1-q^n)^2*Product_{j=1..n}(1+q^j)). %F A335724 a(n) = A335728(n) + A335730(n). %e A335724 There are 14 overpartitions of 4: [4], [4'], [3,1], [3,1'], [3',1], [3',1'], [2,2], [2',2], [2,1,1], [2,1',1], [2',1,1], [2',1',1], [1,1,1,1], [1',1,1,1], and so a(4) = 26. %Y A335724 Cf. A015128, A092269, A235792, A335728, A335730. %K A335724 nonn %O A335724 1,1 %A A335724 _Jeremy Lovejoy_, Jun 19 2020