cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335728 a(n) is the number of smallest parts in the overpartitions of n having even smallest part.

This page as a plain text file.
%I A335728 #11 Jun 20 2020 09:18:25
%S A335728 0,2,0,6,4,12,12,30,36,60,80,132,180,264,360,522,712,990,1344,1844,
%T A335728 2472,3324,4420,5892,7764,10212,13344,17400,22556,29160,37524,48166,
%U A335728 61560,78456,99648,126234,159396,200740,252096,315828
%N A335728 a(n) is the number of smallest parts in the overpartitions of n having even smallest part.
%H A335728 K. Bringmann, J. Lovejoy, and R. Osburn, <a href="https://doi.org/10.1016/j.jnt.2008.10.017">Rank and crank moments for overpartitions</a>, Journal of Number Theory, 129 (2009), 1758-1772.
%H A335728 K. Bringmann, J. Lovejoy, and R. Osburn, <a href="https://doi.org/10.1093/imrn/rnp131">Automorphic properties of generating functions for generalized rank moments and Durfee symbols</a>, International Mathematics Research Notices, (2010), 238-260.
%F A335728 G.f.: 2*(Product_{k>=1} (1+q^k)/(1-q^k))*Sum_{n>=1} (q^(2*n)*Product_{j=1..2*n}(1-q^j))/((1-q^(2*n))^2*Product_{j=1..2*n}(1+q^j)).
%F A335728 a(n) = A335724(n) - A335730(n).
%e A335728 There are 14 overpartitions of 4: [4], [4'], [3,1], [3,1'], [3',1], [3',1'], [2,2], [2',2], [2,1,1], [2,1',1], [2',1,1], [2',1',1], [1,1,1,1], [1',1,1,1], and so a(4) = 6.
%Y A335728 Cf. A015128, A092269, A235792, A335724, A335730.
%K A335728 nonn
%O A335728 1,2
%A A335728 _Jeremy Lovejoy_, Jun 19 2020