This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335729 #39 Sep 04 2020 15:41:22 %S A335729 1,2,10,68,546,4872,46782,474180,5010456,54721224,613912182, %T A335729 7042779996,82329308040,978034001472 %N A335729 Number of "coprime" pairs of binary trees with n carets (see comments). %C A335729 a(n) is the number of ordered pairs of rooted binary trees (with all nodes having either 2 or 0 ordered children) each with n non-leaf nodes (sometimes called carets) such that the pair is "coprime". %C A335729 Call such a tree-pair (A, B) coprime if, upon labeling the leaves 1 through n + 1 (left to right), there does not exist a non-leaf, non-root node a of A and a non-leaf, non-root node b of B such that the set of labels on the descendant leaves of a equals the set of labels on the descendant leaves of b, i.e., if A and B have no proper subtrees "in the same place". %H A335729 S. Cleary and R. Maio, <a href="https://arxiv.org/abs/2001.06407">Counting difficult tree pairs with respect to the rotation distance problem</a>, arXiv:2001.06407 [cs.DS], 2020. %e A335729 A coprime tree-pair with 5 carets: %e A335729 . . %e A335729 / \ / \ %e A335729 / \ \ / \ %e A335729 / / \ \ / \ \ %e A335729 / / \ \ \ / \ \ \ %e A335729 / / \ \ \ \ / \ \ \ / \ %e A335729 1 2 3 4 5 6 1 2 3 4 5 6 %e A335729 A non-coprime tree-pair (both have a subtree on leaves 1-2-3-4): %e A335729 . . %e A335729 / \ / \ %e A335729 / \ \ / \ %e A335729 / \ \ \ / \ \ %e A335729 / \ \ \ / / \ \ %e A335729 / \ / \ \ \ / / \ \ / \ %e A335729 1 2 3 4 5 6 1 2 3 4 5 6 %e A335729 Below we will represent a binary tree by a bracketing of the leaf labels 1 through n + 1 (a vertex of an associahedron). A tree is represented by a balanced string, and its left and right child subtrees are represented by two maximal balanced proper substrings, in order. %e A335729 For n = 2, the a(2) = 2 coprime tree-pairs are: %e A335729 ([[12]3], [1[23]]), %e A335729 ([1[23]], [[12]3]). %e A335729 For n = 3, the a(3) = 10 coprime tree-pairs are: %e A335729 ([1[2[34]]], [[1[23]]4]), %e A335729 ([1[2[34]]], [[[12]3]4]), %e A335729 ([1[[23]4]], [[12][34]]), %e A335729 ([1[[23]4]], [[[12]3]4]), %e A335729 ([[12][34]], [1[[23]4]]), %e A335729 ([[12][34]], [[1[23]]4]), %e A335729 ([[1[23]]4], [1[2[34]]]), %e A335729 ([[1[23]]4], [[12][34]]), %e A335729 ([[[12]3]4], [1[2[34]]]), %e A335729 ([[[12]3]4], [1[[23]4]]). %Y A335729 a(n) counts a subset of the tree-pairs that A111713 counts; "coprime" is a stronger condition than "reduced". It appears that for n > 1, a(n)/2 coincides with A257887. %K A335729 nonn,more %O A335729 1,2 %A A335729 _Dennis Sweeney_, Jul 17 2020