This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335731 #18 Jul 05 2020 12:44:37 %S A335731 1061,1091,1601,1901,10061,10091,16001,19001,106861,109891,110651, %T A335731 110921,120121,121021,121921,129011,129121,150151,151051,151651, %U A335731 156011,156151,168601,198901,1022591,1026521,1028011,1055261,1058011,1059251,1069291,1096561,1102891,1105861,1106881,1108201,1108501,1109881,1111651 %N A335731 Bemirps that also interpret 2 and 5 as upside-down forms of each other, assuming a digital font. %e A335731 110651 is in the list as its upside-down form 110921, and its emirp 156011, and the emirp of its upside-down form 129011, are all primes and uniquely different numbers. %o A335731 (Python) %o A335731 from sympy.ntheory import isprime as isp %o A335731 def ip(pp): %o A335731 rr = [] %o A335731 for qq in pp: %o A335731 if qq=="0" or qq=="1" or qq=="8": %o A335731 rr.append(qq) %o A335731 elif qq=="2": %o A335731 rr.append("5") %o A335731 elif qq=="5": %o A335731 rr.append("2") %o A335731 elif qq=="6": %o A335731 rr.append("9") %o A335731 elif qq=="9": %o A335731 rr.append("6") %o A335731 return "".join(rr) %o A335731 for bb in range(1,10000000): %o A335731 if isp(bb): %o A335731 bb = str(bb) %o A335731 if ("7" not in bb) and ("4" not in bb) and ("3" not in bb): %o A335731 cc = bb[::-1] %o A335731 dd = ip(bb) %o A335731 ee = ip(cc) %o A335731 if bb!=cc and dd!=ee and bb!=dd and bb!=ee and cc!=dd and cc!=ee and isp(int(cc)) and isp(int(dd)) and isp(int(ee)): %o A335731 print(bb) %Y A335731 Normal bemirps are defined in A048895. %K A335731 base,nonn %O A335731 1,1 %A A335731 _Ray G. Opao_, Jun 20 2020