This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335742 #24 Aug 14 2021 18:55:38 %S A335742 12978,13338,34920,41382,76626,176946,253422,455202,1336734,2410254, %T A335742 3187782,3214458,3277800,3347838,3387240,3427866,3507894,3587922, %U A335742 3614598,3694626,3747978,3774654,3908034,4094766,4148118,4174794,4228146,4414878,4494906,4628286 %N A335742 Pseudoperfect (or semiperfect) numbers k having more than one set of contiguous proper divisors whose sum equals k. %C A335742 Observation of some pseudoperfect numbers with an attribute similar to multiperfect numbers. %C A335742 A total of 84 of the 96 terms (representing all terms less than 10^7) are equal to 0 (mod 13338). %C A335742 Many of the terms greater than (13338*239)-1 are in the form of 13338*p where p>=239. Prime(52)*1338 through Prime(50188)*1338 were tested and are all terms in this sequence. %C A335742 There are numbers greater than (13338*239)-1 in this sequence that do not have 13338 as a divisor, for example; 3277800, 3387240, 5007222 and 9233154. %C A335742 (Uni-)Perfect numbers cannot be in this sequence. %e A335742 The proper divisors of 12978 are (1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 103, 126, 206, 309, 618, 721, 927, 1442, 1854, 2163, 4326, 6489). %e A335742 The contiguous divisor lists of (3+6+7+9+14+18+21+42+63+103+126+206+309+618+721+927+1442+1854+2163+4326) and (2163+4326+6489) equals 12978. %t A335742 pspQ[n_] := Module[{d = Divisors[n]}, c = Accumulate[d]; Length @ Intersection[c, c + n] > 2]; Select[Range[10^6], pspQ] (* _Amiram Eldar_, Jul 02 2020 *) %o A335742 (Python) %o A335742 # Pseudoperfect (or semiperfect) numbers having more than one set of contiguous proper divisors whose sum equals n. %o A335742 import sympy %o A335742 A335742_list = [] %o A335742 for n in range(1, (10**7)+1): %o A335742 # create an ascending list of divisors of n. %o A335742 n_divs = list(sympy.divisors(n)) %o A335742 # pop last divisor, which equals n, so only proper divisors are examined. %o A335742 n_divs.pop() %o A335742 # reset iterator for sets of contiguous proper divisors whose sum equals n. %o A335742 itr = 0 %o A335742 # run the outer loop for each proper divisor of n. %o A335742 for i in range(len(n_divs)+1): %o A335742 # run the inner loop for each divisor >= i. %o A335742 for j in range(i, len(n_divs)+1): %o A335742 # if sum of divisors i:j is greater than n; continue to next n. %o A335742 if sum(n_divs[i:j]) > n: %o A335742 continue %o A335742 # elif sum of divisors i:j equals n; increment itr; if itr > 1; append n to sequence. %o A335742 elif sum(n_divs[i:j]) == n: %o A335742 itr += 1 %o A335742 if itr > 1: %o A335742 A335742_list.append(n) %Y A335742 Subsequence of A005835 and A236359. %K A335742 nonn %O A335742 1,1 %A A335742 _Matthew Schuster_, Jul 02 2020