This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335747 #33 Jun 15 2022 01:51:50 %S A335747 1,3,13,26,66,154,380,904,2204,5286,12818,30854,74636,179948,434820, %T A335747 1049122,2533818,6115538,14766868,35646080,86064196,207766110, %U A335747 501609946,1210964110,2923573588,7058053972,17039774268 %N A335747 Number of ways to tile vertically-fault-free 3 X n strip with squares and dominoes. %C A335747 By "vertically-fault-free" we mean that the tilings of the 3 X n strip do not split along any interior vertical line. Here are two of the 66 possible vertically-fault-free tilings of a 3 X 4 strip with squares and dominoes: %C A335747 ._ _ _ _ _ _ _ _ %C A335747 |_ _|_ _| |_ _|_| | %C A335747 |_|_ _| | | |_ _|_| %C A335747 |_|_ _|_| |_|_|_ _| %H A335747 G. C. Greubel, <a href="/A335747/b335747.txt">Table of n, a(n) for n = 0..1000</a> %H A335747 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-1,-1). %F A335747 a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4) for n >= 7. %F A335747 a(n) = 2*A291227(n) - 8*A112577(n-2) + 2*A112577(n-4) for n >= 4. %F A335747 a(n) = (2/3)*(A221174(n+1) + (-1)^n*A000045(n-1)) for n >= 3. - _Greg Dresden_, Jul 03 2020 %F A335747 G.f.: (1 + 2*x + 6*x^2 + 2*x^3 - 8*x^4 + x^6) / ((1 + x - x^2)*(1 - 2*x - x^2)). - _Colin Barker_, Jun 21 2020 %F A335747 a(n) = (1/3)*(-9*[n=0] - 3*[n=1] + 3*[n=2] + 2*(3*A000129(n+1) + 2*A000129(n-1)) + 2*(-1)^n*Fibonacci(n-1)). - _G. C. Greubel_, Jan 15 2022 %e A335747 a(2) = 13 thanks to these thirteen vertically-fault-free tilings of a 3 X 2 strip: %e A335747 ._ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A335747 |_ _| |_|_| |_|_| |_ _| |_|_| |_ _| |_ _| %e A335747 |_|_| |_ _| |_|_| |_ _| |_ _| |_|_| |_ _| %e A335747 |_|_| |_|_| |_ _| |_|_| |_ _| |_ _| |_ _| %e A335747 ._ _ _ _ _ _ _ _ _ _ _ _ %e A335747 |_ _| |_ _| |_ _| | |_| |_| | | | | %e A335747 | |_| |_| | | | | |_|_| |_|_| |_|_| %e A335747 |_|_| |_|_| |_|_| |_ _| |_ _| |_ _| %t A335747 CoefficientList[Series[(1+2x+6x^2+2x^3-8x^4+x^6)/((1+x-x^2)(1-2x-x^2)), {x, 0, 26}], x] (* _Michael De Vlieger_, Jul 03 2020 *) %t A335747 LinearRecurrence[{1,4,-1,-1}, {1,3,13,26,66,154,380}, 40] (* _G. C. Greubel_, Jan 15 2022 *) %o A335747 (Magma) I:=[26, 66, 154, 380]; [1,3,13] cat [n le 4 select I[n] else Self(n-1) +4*Self(n-2) -Self(n-3) -Self(n-4): n in [1..40]]; // _G. C. Greubel_, Jan 15 2022 %o A335747 (Sage) %o A335747 def P(n): return lucas_number1(n,2,-1) %o A335747 def A335747(n): return (1/3)*(-9*bool(n==0) - 3*bool(n==1) + 3*bool(n==2) + 2*(3*P(n+1) + 2*P(n-1)) + 2*(-1)^n*fibonacci(n-1)) %o A335747 [A335747(n) for n in (0..40)] # _G. C. Greubel_, Jan 15 2022 %Y A335747 Cf. A033506 (which gives all tilings of 3 X n strip), A112577, A134438, A291227. %Y A335747 Cf. A000045, A000129. %K A335747 nonn %O A335747 0,2 %A A335747 _Greg Dresden_ and _Oluwatobi Jemima Alabi_, Jun 20 2020