This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335762 #16 Dec 23 2023 09:33:16 %S A335762 1,4,5,0,0,3,2,1,4,5,3,6,2,1,2,0,8,3,1,6,0,8,3,9,5,8,8,7,1,8,9,2,2,3, %T A335762 4,2,2,3,2,5,0,6,2,1,1,7,4,4,7,1,6,7,1,4,4,6,5,2,4,3,8,8,3,6,7,0,9,4, %U A335762 1,6,3,3,7,2,9,3,8,0,8,3,0,7,6,8,1,3,5,8,7,0,3,6,5,5,6,3,9,1,4,6,5,5,8,5,5 %N A335762 Decimal expansion of Product_{p prime} (1 + p/((p-1)*(p+1)^2)). %C A335762 The asymptotic mean of A367987. - _Amiram Eldar_, Dec 23 2023 %F A335762 Equals Sum_{k>=1} 1/A000082(k) = Sum_{k>=1} 1/(k * A001615(k)). %F A335762 Equals A013661 * A065465. - _Amiram Eldar_, Dec 23 2023 %e A335762 1.450032145362120831608395887189223422325062117447167... %t A335762 $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-1, 1, 2, 0, -1}, {0, 2, -3, 6, -5}, m]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n])/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] %o A335762 (PARI) prodeulerrat(1 + p/((p-1)*(p+1)^2)) \\ _Amiram Eldar_, Mar 18 2021 %Y A335762 Cf. A000082, A001615, A013661, A065465, A065484, A367987. %K A335762 nonn,cons %O A335762 1,2 %A A335762 _Amiram Eldar_, Jun 21 2020 %E A335762 More digits from _Vaclav Kotesovec_, Sep 19 2020