A335765 Decimal expansion of Sum_{k>=1} 1/2^(k-omega(k)) where omega(k) is the number of distinct primes dividing k (A001221).
1, 5, 3, 3, 8, 8, 5, 6, 4, 1, 4, 7, 4, 3, 8, 0, 6, 6, 6, 8, 2, 6, 4, 0, 6, 0, 3, 0, 9, 7, 0, 6, 3, 2, 8, 8, 1, 5, 0, 0, 7, 0, 7, 9, 4, 0, 3, 6, 2, 1, 5, 4, 7, 7, 9, 1, 6, 6, 3, 3, 8, 1, 2, 5, 8, 9, 8, 0, 9, 4, 8, 9, 6, 3, 8, 0, 4, 3, 8, 8, 6, 4, 4, 3, 9, 5, 4
Offset: 1
Examples
1.533885641474380666826406030970632881500707940362154...
Links
- Maxie Dion Schmidt, A catalog of interesting and useful Lambert series identities, arXiv:2004.02976 [math.NT], 2020.
- Eric Weisstein's World of Mathematics, Lambert Series.
- Wikipedia, Lambert series.
Crossrefs
Programs
-
Mathematica
RealDigits[Sum[1/2^(n - PrimeNu[n]), {n, 1, 500}], 10, 100][[1]]