cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335813 Expansion of e.g.f. Product_{k>=1} (1 + (1 - exp(x))^k).

This page as a plain text file.
%I A335813 #11 Jul 09 2020 02:46:56
%S A335813 1,-1,1,-7,-11,-151,-419,-1807,-5291,-381031,-9125939,-139879807,
%T A335813 -1217973371,7055720489,657464911741,20268419534993,455079458957749,
%U A335813 7487596915540409,62151133224856621,-943454812059725407,-32387452121872219931,1120264679544729734729
%N A335813 Expansion of e.g.f. Product_{k>=1} (1 + (1 - exp(x))^k).
%C A335813 Inverse binomial transform of A335811.
%F A335813 a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * k! * A000009(k).
%t A335813 nmax = 21; CoefficientList[Series[Product[(1 + (1 - Exp[x])^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
%t A335813 Table[Sum[(-1)^k StirlingS2[n, k] k! PartitionsQ[k], {k, 0, n}], {n, 0, 21}]
%o A335813 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+(1-exp(x))^k))) \\ _Seiichi Manyama_, Jul 08 2020
%Y A335813 Cf. A000009, A305550, A335811, A335812.
%K A335813 sign
%O A335813 0,4
%A A335813 _Ilya Gutkovskiy_, Jun 25 2020