cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335818 Decimal expansion of Sum_{k>=1} 1/phi(k)^3, where phi is the Euler totient function.

Original entry on oeis.org

2, 4, 7, 6, 1, 9, 4, 7, 4, 8, 1, 6, 5, 0, 2, 5, 7, 9, 4, 3, 2, 6, 8, 5, 5, 4, 4, 4, 1, 2, 5, 1, 4, 5, 1, 6, 0, 0, 4, 5, 4, 5, 6, 8, 5, 6, 3, 5, 5, 2, 8, 4, 3, 8, 4, 3, 4, 5, 7, 0, 7, 8, 7, 9, 1, 5, 0, 9, 4, 9, 0, 3, 0, 1, 1, 7, 5, 1, 2, 4, 5, 8, 1, 7, 6, 2, 8, 0, 1, 3, 4, 6, 1, 5, 2, 6, 7, 3, 8, 9, 3, 3, 2, 8, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 25 2020

Keywords

Comments

Sum_{k>=1} 1/phi(k)^m is convergent iff m > 1 (reference Monier). - Bernard Schott, Jan 14 2021

Examples

			2.476194748165025794326855444125145160045456856355284384345707879150949...
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21, pp. 281 and 294.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; f[p_] := (1 + 1/((1 - 1/p)^s * (p^s - 1))) /. s -> 3; Do[cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 120]]], {m, 100, 1000, 100}]
  • PARI
    prodeulerrat(1 + 1/((1 - 1/p)^3 * (p^3 - 1))) \\ Amiram Eldar, Mar 15 2021

Formula

Equals Product_{primes p} (1 + 1/((1 - 1/p)^3 * (p^3 - 1))).