A335818 Decimal expansion of Sum_{k>=1} 1/phi(k)^3, where phi is the Euler totient function.
2, 4, 7, 6, 1, 9, 4, 7, 4, 8, 1, 6, 5, 0, 2, 5, 7, 9, 4, 3, 2, 6, 8, 5, 5, 4, 4, 4, 1, 2, 5, 1, 4, 5, 1, 6, 0, 0, 4, 5, 4, 5, 6, 8, 5, 6, 3, 5, 5, 2, 8, 4, 3, 8, 4, 3, 4, 5, 7, 0, 7, 8, 7, 9, 1, 5, 0, 9, 4, 9, 0, 3, 0, 1, 1, 7, 5, 1, 2, 4, 5, 8, 1, 7, 6, 2, 8, 0, 1, 3, 4, 6, 1, 5, 2, 6, 7, 3, 8, 9, 3, 3, 2, 8, 9
Offset: 1
Examples
2.476194748165025794326855444125145160045456856355284384345707879150949...
References
- Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21, pp. 281 and 294.
Links
- Eric Weisstein's World of Mathematics, Totient Function.
- Eric Weisstein's World of Mathematics, Totient Summatory Function.
- Wikipedia, Euler's totient function.
Programs
-
Mathematica
$MaxExtraPrecision = 1000; f[p_] := (1 + 1/((1 - 1/p)^s * (p^s - 1))) /. s -> 3; Do[cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 120]]], {m, 100, 1000, 100}]
-
PARI
prodeulerrat(1 + 1/((1 - 1/p)^3 * (p^3 - 1))) \\ Amiram Eldar, Mar 15 2021
Formula
Equals Product_{primes p} (1 + 1/((1 - 1/p)^3 * (p^3 - 1))).
Comments