A335828 Numerators of coefficients in a power series expansion of the distance between two bodies falling freely towards each other along a straight line under the influence of their mutual gravitational attraction.
1, 1, 11, 73, 887, 136883, 7680089, 26838347, 14893630313, 1908777537383, 2422889987331397, 233104477447558811, 2430782624763507659, 14420190617640617313953, 4515429325405165295004389, 812454316441781379614873497, 166481868581561511154267399013
Offset: 1
Examples
The series begins with f(x) = 1 - (1/2)*x^2 - (1/12)*x^4 - (11/360)*x^6 - ...
References
- Sudhir Ranjan Jain, Mechanics, Waves and Thermodynamics: An Example-based Approach, Cambridge University Press, 2016. See page 97.
- Ernst Meissel, Über Reihen, denen man bei der numerischen Lösung des Problems der Dreikörperproblems begegnet, wenn die Anfangsgeschwindigkeiten Null sind, in: Jahresbericht über die Realschule in Kiel: Während des Schuljahres 1881/82, A. F. Jensen, Kiel, 1882, pp. 1-11.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..243
- S. K. Foong, From Moon-fall to motions under inverse square laws, European journal of physics, Vol. 29, No. 5 (2008), pp. 987-1003, alternative link.
- Jaak Peetre, Ernst Meissel and the Pythagorean problem - the Drei-Körper-Problem in the Nachlass Meissel, draft, 1997.
Programs
-
Mathematica
c[1] = 1/2; c[n_] := c[n] = (2*Sum[(n - k)*(2*n - 2*k - 1)*c[n - k]*c[k], {k, 1, n - 1}] - Sum[(n - m)*(2*n - 2*m - 1)*c[n - m]*c[m - k]*c[k], {m, 2, n - 1}, {k, 1, m - 1}])/(n*(2*n - 1)); Numerator @ Array[c, 17] (* or *) Quiet[-Numerator @ CoefficientList[AsymptoticDSolveValue[{y[x]*y'[x]^2 == 2*(1-y[x]), y[0] == 1}, y[x], {x, 0, 25}], x][[3;;-1;;2]]] (* requires Mathematica 11.3+ *)
Formula
a(n) = numerator(c(n)), c(1) = 1/2, c(n) = (2 * Sum_{k=1..n-1} (n-k)*(2*n-2*k-1)*c(n-k)*c(k) - Sum_{m=2..n-1} (n-m)*(2*n-2*m-1)*c(n-m) * Sum_{k=1..m-1} c(m-k)*c(k))/(n*(2*n - 1)).
c(n) ~ c_0 * n^(-5/3) * (Pi/(2*sqrt(2)))^(-2*n), where c_0 = (3*Pi)^(2/3) / (18*Gamma(4/3)) = 0.277587...
Comments