cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335832 Numbers k with record values of the ratio d(k)/id(k) between the number of divisors and the number of infinitary divisors.

Original entry on oeis.org

1, 4, 16, 144, 256, 1296, 2304, 20736, 518400, 1679616, 5308416, 12960000, 41990400, 132710400, 429981696, 635040000, 1049760000, 3317760000, 10749542400, 31116960000, 51438240000, 162570240000, 268738560000, 2520473760000, 7965941760000, 13168189440000, 167961600000000
Offset: 1

Views

Author

Amiram Eldar, Jun 25 2020

Keywords

Comments

This sequence is infinite since the ratio d(k)/id(k) is unbounded. For example, for k = 2^(2^m) we have d(k)/id(k) = (2^m+1)/2.
The corresponding record values are 1, 1.5, 2.5, 3.75, 4.5, 6.25, 6.75, 11.25, 16.875, 20.25, ...

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    id[1] = 1; id[n_] := Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[All, 2]]]; f[1] = 1; f[n_] := DivisorSigma[0, n]/id[n]; seq = {}; fm = 0; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

Formula

The ratios d(k)/id(k) for k = 1, 2, 3 and 4 are 1, 1, 1 and 3/2. The record values occur at 1 and 4.