This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335835 #16 May 06 2025 11:22:28 %S A335835 0,1,2,3,6,5,6,7,14,13,10,13,12,13,14,15,30,29,26,25,26,21,26,29,28, %T A335835 25,26,25,28,29,30,31,62,61,58,57,50,53,50,57,58,53,42,53,50,53,58,61, %U A335835 60,57,50,51,50,53,50,57,56,57,58,57,60,61,62,63,126,125 %N A335835 Sort the run lengths in binary expansion of n in descending order (with multiplicities). %C A335835 This sequence preserves the number of runs (A005811) and the length (A070939) of the binary representation of a number. %H A335835 Rémy Sigrist, <a href="/A335835/b335835.txt">Table of n, a(n) for n = 0..8191</a> %H A335835 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A335835 a(a(n)) = a(n). %e A335835 For n = 72: %e A335835 - the binary representation of 72 is "1001000", %e A335835 - the corresponding run lengths are: 1, 2, 1, 3, %e A335835 - in descending order: 3, 2, 1, 1, %e A335835 - so the binary representation of a(72) is "1110010", %e A335835 - and a(72) = 114. %o A335835 (PARI) torl(n) = { my (rr=[]); while (n, my (r=valuation(n+(n%2), 2)); rr = concat(r, rr); n\=2^r); rr } %o A335835 fromrl(rr) = { my (v=0); for (k=1, #rr, v = (v+(k%2))*2^rr[k]-(k%2)); v } %o A335835 a(n) = { fromrl(vecsort(torl(n),,4)) } %Y A335835 Cf. A005811, A037016 (fixed points), A070939, A101211, A335834. %K A335835 nonn,base,look,easy %O A335835 0,3 %A A335835 _Rémy Sigrist_, Jun 26 2020