This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335837 #17 May 09 2025 07:12:39 %S A335837 1,2,5,9,18,31,54,89,146,228,358,545,821,1219,1795,2596,3741,5323, %T A335837 7521,10534,14659,20232,27788,37897,51410,69347,93111,124348,165378, %U A335837 218924,288646,379021,495864,646272,839490,1086693,1402268,1803786,2313498,2958530,3773093 %N A335837 Number of normal patterns matched by integer partitions of n. %C A335837 We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1). %H A335837 Christian Sievers, <a href="/A335837/b335837.txt">Table of n, a(n) for n = 0..2000</a> %H A335837 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_pattern">Permutation pattern</a> %H A335837 Gus Wiseman, <a href="/A102726/a102726.txt">Sequences counting and ranking compositions by the patterns they match or avoid.</a> %e A335837 The a(0) = 1 through a(4) = 18 pairs of a partition with a matched pattern: %e A335837 ()/() (1)/() (2)/() (3)/() (4)/() %e A335837 (1)/(1) (2)/(1) (3)/(1) (4)/(1) %e A335837 (11)/() (21)/() (31)/() %e A335837 (11)/(1) (21)/(1) (31)/(1) %e A335837 (11)/(11) (21)/(21) (31)/(21) %e A335837 (111)/() (22)/() %e A335837 (111)/(1) (22)/(1) %e A335837 (111)/(11) (22)/(11) %e A335837 (111)/(111) (211)/() %e A335837 (211)/(1) %e A335837 (211)/(11) %e A335837 (211)/(21) %e A335837 (211)/(211) %e A335837 (1111)/() %e A335837 (1111)/(1) %e A335837 (1111)/(11) %e A335837 (1111)/(111) %e A335837 (1111)/(1111) %t A335837 mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}]; %t A335837 Table[Sum[Length[Union[mstype/@Subsets[y]]],{y,IntegerPartitions[n]}],{n,0,8}] %o A335837 (PARI) %o A335837 lista(n) = { %o A335837 my(v=vector(n+1,i,1+x*O(x^n))); %o A335837 for(k=1,n, %o A335837 v=vector(n\(k+1)+1,i, %o A335837 (1-x^(i*k))/(1-x^k)*v[i] + sum(j=i,n\k,x^(j*k)*v[j+1]) + %o A335837 x^(k*i)/(1-x^k)^2*v[1] ) ); %o A335837 Vec(v[1]) } \\ _Christian Sievers_, May 08 2025 %Y A335837 The version for compositions in standard order is A335454. %Y A335837 The version for compositions is A335456. %Y A335837 The version for Heinz numbers of partitions is A335549. %Y A335837 The contiguous case is A335838. %Y A335837 Patterns are counted by A000670 and ranked by A333217. %Y A335837 Patterns contiguously matched by prime indices are A335516. %Y A335837 Contiguous divisors are counted by A335519. %Y A335837 Minimal patterns avoided by prime indices are counted by A335550. %Y A335837 Cf. A000005, A056986, A108917, A269134, A333257, A334299, A335458, A335465. %K A335837 nonn %O A335837 0,2 %A A335837 _Gus Wiseman_, Jun 27 2020 %E A335837 a(18) corrected by and a(19)-a(22) from _Jinyuan Wang_, Jun 27 2020 %E A335837 More terms from _Christian Sievers_, May 08 2025