cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335837 Number of normal patterns matched by integer partitions of n.

This page as a plain text file.
%I A335837 #17 May 09 2025 07:12:39
%S A335837 1,2,5,9,18,31,54,89,146,228,358,545,821,1219,1795,2596,3741,5323,
%T A335837 7521,10534,14659,20232,27788,37897,51410,69347,93111,124348,165378,
%U A335837 218924,288646,379021,495864,646272,839490,1086693,1402268,1803786,2313498,2958530,3773093
%N A335837 Number of normal patterns matched by integer partitions of n.
%C A335837 We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
%H A335837 Christian Sievers, <a href="/A335837/b335837.txt">Table of n, a(n) for n = 0..2000</a>
%H A335837 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_pattern">Permutation pattern</a>
%H A335837 Gus Wiseman, <a href="/A102726/a102726.txt">Sequences counting and ranking compositions by the patterns they match or avoid.</a>
%e A335837 The a(0) = 1 through a(4) = 18  pairs of a partition with a matched pattern:
%e A335837   ()/()  (1)/()   (2)/()     (3)/()       (4)/()
%e A335837          (1)/(1)  (2)/(1)    (3)/(1)      (4)/(1)
%e A335837                   (11)/()    (21)/()      (31)/()
%e A335837                   (11)/(1)   (21)/(1)     (31)/(1)
%e A335837                   (11)/(11)  (21)/(21)    (31)/(21)
%e A335837                              (111)/()     (22)/()
%e A335837                              (111)/(1)    (22)/(1)
%e A335837                              (111)/(11)   (22)/(11)
%e A335837                              (111)/(111)  (211)/()
%e A335837                                           (211)/(1)
%e A335837                                           (211)/(11)
%e A335837                                           (211)/(21)
%e A335837                                           (211)/(211)
%e A335837                                           (1111)/()
%e A335837                                           (1111)/(1)
%e A335837                                           (1111)/(11)
%e A335837                                           (1111)/(111)
%e A335837                                           (1111)/(1111)
%t A335837 mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
%t A335837 Table[Sum[Length[Union[mstype/@Subsets[y]]],{y,IntegerPartitions[n]}],{n,0,8}]
%o A335837 (PARI)
%o A335837 lista(n) = {
%o A335837   my(v=vector(n+1,i,1+x*O(x^n)));
%o A335837   for(k=1,n,
%o A335837     v=vector(n\(k+1)+1,i,
%o A335837         (1-x^(i*k))/(1-x^k)*v[i] + sum(j=i,n\k,x^(j*k)*v[j+1]) +
%o A335837         x^(k*i)/(1-x^k)^2*v[1] ) );
%o A335837   Vec(v[1]) } \\ _Christian Sievers_, May 08 2025
%Y A335837 The version for compositions in standard order is A335454.
%Y A335837 The version for compositions is A335456.
%Y A335837 The version for Heinz numbers of partitions is A335549.
%Y A335837 The contiguous case is A335838.
%Y A335837 Patterns are counted by A000670 and ranked by A333217.
%Y A335837 Patterns contiguously matched by prime indices are A335516.
%Y A335837 Contiguous divisors are counted by A335519.
%Y A335837 Minimal patterns avoided by prime indices are counted by A335550.
%Y A335837 Cf. A000005, A056986, A108917, A269134, A333257, A334299, A335458, A335465.
%K A335837 nonn
%O A335837 0,2
%A A335837 _Gus Wiseman_, Jun 27 2020
%E A335837 a(18) corrected by and a(19)-a(22) from _Jinyuan Wang_, Jun 27 2020
%E A335837 More terms from _Christian Sievers_, May 08 2025