cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335863 Decimal expansion of the negative of the zero x2 of the cubic polynomial x^3 - 2*x^2 - 10*x - 6.

This page as a plain text file.
%I A335863 #10 Nov 17 2020 21:22:59
%S A335863 1,7,5,2,5,1,7,8,2,1,9,2,9,8,1,6,8,1,8,4,8,9,8,3,9,2,1,2,4,3,7,3,1,0,
%T A335863 0,2,7,9,5,2,5,9,0,9,8,8,6,0,6,0,3,1,1,3,3,7,8,5,1,4,2,7,6,0,4,8,4,9,
%U A335863 9,7,7,8,1,3,9,9,0,6,2,2,5,9,7,2,9,5,7,4,9,0,8,4,6,2,5,3,4,4,8
%N A335863 Decimal expansion of the negative of the zero x2 of the cubic polynomial x^3 - 2*x^2 - 10*x - 6.
%C A335863 For details and links see A335862.
%H A335863 Wolfdieter Lang, <a href="https://www.itp.kit.edu/~wl/EISpub/A333852.pdf">A list of representative simple difference sets of the Singer type for small orders m</a>, Karlsruher Institut für Technologie (Karlsruhe, Germany 2020).
%F A335863 -x2 = (1/3)*(2 - (1/2)*(1 - sqrt(3)*i)*(179 + 3*sqrt(3)*sqrt(269)*i)^(1/3) - (1/2)*(1 + sqrt(3)*i)*(179 - 3*sqrt(3)*sqrt(269)*i)^(1/3)), where i is the imaginary unit.
%e A335863 -x2 = 1.7525178219298168184898392124373100279...
%t A335863 With[{j = Sqrt[3] I, k = 3 Sqrt[3] Sqrt[269] I}, First@ RealDigits[Re[(1/3) (2 - (1/2) (1 - j) (179 + k)^(1/3) - (1/2) (1 + j) (179 - k)^(1/3))], 10, 99]] (* _Michael De Vlieger_, Nov 17 2020 *)
%Y A335863 Cf. A335862 (x1), A335864 (-x3).
%K A335863 nonn,cons,easy
%O A335863 1,2
%A A335863 _Wolfdieter Lang_, Jun 29 2020