cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335864 Decimal expansion of the negative of the zero x3 of the cubic polynomial x^3 - 2*x^2 - 10*x - 6.

This page as a plain text file.
%I A335864 #11 Nov 17 2020 21:36:32
%S A335864 7,5,8,8,8,6,8,4,2,2,9,6,9,4,1,3,0,4,8,4,9,3,8,2,2,8,4,3,7,5,8,5,9,5,
%T A335864 4,6,0,6,9,2,5,2,6,2,7,8,4,4,8,5,4,6,1,2,5,6,6,6,0,5,9,2,5,6,4,2,9,6,
%U A335864 0,5,6,3,4,2,2,5,8,6,9,9,1,8,6,0,1,0,0,9,1,8,7,1,1,7,9,1,0
%N A335864 Decimal expansion of the negative of the zero x3 of the cubic polynomial x^3 - 2*x^2 - 10*x - 6.
%C A335864 For details and links see A335862.
%H A335864 Wolfdieter Lang, <a href="https://www.itp.kit.edu/~wl/EISpub/A333852.pdf">A list of representative simple difference sets of the Singer type for small orders m</a>, Karlsruher Institut für Technologie (Karlsruhe, Germany 2020).
%F A335864 -x3 = (1/3)*(2 - (1/2)*(1 + sqrt(3)*i)*(179 + 3*sqrt(3)*sqrt(269)*i)^(1/3) - (1/2)*(1 - sqrt(3)*i)*(179 - 3*sqrt(3)*sqrt(269)*i)^(1/3)), where i is the imaginary unit.
%e A335864 -x3 = 0.758886842296941304849382284375859546...
%p A335864 evalf((f-> (sqrt(34)*(cos(f)-sin(f)*sqrt(3))-2)/3)(arctan(sqrt(807)*3/179)/3), 120);  # _Alois P. Heinz_, Nov 17 2020
%t A335864 With[{j = Sqrt[3] I, k = 3 Sqrt[3] Sqrt[269] I}, First@ RealDigits[Re[(1/3) (2 - (1/2) (1 + j) (179 + k)^(1/3) - (1/2) (1 - j) (179 - k)^(1/3))], 10, 97]] (* _Michael De Vlieger_, Nov 17 2020 *)
%Y A335864 Cf. A335862 (x1), A335863 (-x2).
%K A335864 nonn,cons,easy
%O A335864 0,1
%A A335864 _Wolfdieter Lang_, Jun 29 2020