cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335867 a(n) = exp(-n) * Sum_{k>=0} n^k * (k - 1)^n / k!.

This page as a plain text file.
%I A335867 #10 Feb 16 2025 08:34:00
%S A335867 1,0,3,29,397,6879,144751,3587100,102351929,3305310065,119186370091,
%T A335867 4746969337923,206966647324933,9804683604806908,501491905963040903,
%U A335867 27544070654283355889,1616869985889305862385,101020181695996141703335,6693303018177050431484035,468770856837303230888704208
%N A335867 a(n) = exp(-n) * Sum_{k>=0} n^k * (k - 1)^n / k!.
%H A335867 Seiichi Manyama, <a href="/A335867/b335867.txt">Table of n, a(n) for n = 0..200</a>
%H A335867 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>
%F A335867 a(n) = n! * [x^n] exp(n*(exp(x) - 1) - x).
%F A335867 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * BellPolynomial_k(n).
%t A335867 Table[n! SeriesCoefficient[Exp[n (Exp[x] - 1) - x], {x, 0, n}], {n, 0, 19}]
%t A335867 Table[Sum[(-1)^(n - k) Binomial[n, k] BellB[k, n], {k, 0, n}], {n, 0, 19}]
%Y A335867 Cf. A000296, A217924, A242817, A334240, A335868.
%K A335867 nonn
%O A335867 0,3
%A A335867 _Ilya Gutkovskiy_, Jun 27 2020