This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335877 #6 Jun 30 2020 00:16:26 %S A335877 0,0,0,0,1,0,-1,0,0,1,0,0,0,-1,1,0,2,0,0,1,-1,0,-1,0,2,0,0,-1,1,1,-2, %T A335877 0,0,2,0,0,1,0,0,1,1,-1,-1,0,1,-1,-2,0,-2,2,2,0,1,0,1,-1,0,1,0,1,-1, %U A335877 -2,-1,0,1,0,0,2,-1,0,-1,0,2,1,2,0,-1,0,-1,1,0,1,0,-1,3,-1,1,0,2,1,-1,-1,-2,-2,1,0,1,-2,0,2,2,2,0,0,0 %N A335877 a(n) = A331410(n) - A329697(n). %C A335877 Completely additive because A329697 and A331410 are. %H A335877 Antti Karttunen, <a href="/A335877/b335877.txt">Table of n, a(n) for n = 1..65537</a> %F A335877 a(n) = A331410(n) - A329697(n). %F A335877 a(2) = 0, a(p) = A331410(p+1)-A329697(p-1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1. %o A335877 (PARI) %o A335877 A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); }; %o A335877 A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); }; %o A335877 A335877(n) = (A331410(n)-A329697(n)); %o A335877 \\ Or alternatively as: %o A335877 A335877(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(A331410(f[k,1]+1)-A329697(f[k,1]-1)))); }; %Y A335877 Cf. A329697, A331410, A334861, A335875. %Y A335877 Cf. A335878 (positions of zeros). %K A335877 sign %O A335877 1,17 %A A335877 _Antti Karttunen_, Jun 29 2020