This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335887 #11 Jun 28 2020 18:54:15 %S A335887 1,3,4,11,6,16,8,51,22,26,12,60,14,36,24,307,18,130,20,98,50,56,24, %T A335887 284,56,66,184,136,30,144,32,2451,48,86,48,498,38,96,92,466,42,200,44, %U A335887 212,132,116,48,1740,106,456,72,250,54,1696,122,648,134,146,60,552,62 %N A335887 Maximal sum of subgroup orders for a finite group of order n. %D A335887 The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.9.3, 2018. gap-system.org. %H A335887 Sébastien Palcoux, <a href="https://mathoverflow.net/q/364368/34538">On the sum the subgroup orders of a finite group</a> (version: 2020-06-29), MathOverflow. %o A335887 (GAP) %o A335887 L:=[];; %o A335887 for n in [1..100] do %o A335887 Mn:=0; %o A335887 r:=NrSmallGroups(n); %o A335887 for d in [1..r] do %o A335887 g:=SmallGroup(n,d); %o A335887 lat:=AllSubgroups(g); %o A335887 sg:=Sum(List(lat,Order)); %o A335887 if sg>Mn then %o A335887 Mn:=sg; %o A335887 fi; %o A335887 od; %o A335887 Add(L,Mn); %o A335887 od; %o A335887 Print(L); %Y A335887 Cf. A000005, A000203, A018216, A335888. %K A335887 nonn %O A335887 1,2 %A A335887 _Sébastien Palcoux_, Jun 28 2020