This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335921 #24 Apr 26 2022 02:59:14 %S A335921 0,1,4,14,50,178,644,2347,8624,31908,118768,444308,1669560,6298280, %T A335921 23842032,90531032,344702646,1315726218,5033357852,19294463682, %U A335921 74099098212,285056401796,1098314920968,4237879802726,16373796107092,63341371265892,245315823125496 %N A335921 Total height of all binary search trees with n internal nodes. %C A335921 Empty external nodes are counted in determining the height of a search tree. %H A335921 Alois P. Heinz, <a href="/A335921/b335921.txt">Table of n, a(n) for n = 0..1000</a> %H A335921 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Binary search tree</a> %H A335921 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %H A335921 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A335921 a(n) = Sum_{k=0..n} k * A335919(n,k) = Sum_{k=0..n} k * A335920(n,k). %F A335921 a(n) is odd <=> n in { A083420 }. %e A335921 a(3) = 14 = 3 + 3 + 2 + 3 + 3: %e A335921 . %e A335921 3 3 2 1 1 %e A335921 / \ / \ / \ / \ / \ %e A335921 2 o 1 o 1 3 o 3 o 2 %e A335921 / \ / \ ( ) ( ) / \ / \ %e A335921 1 o o 2 o o o o 2 o o 3 %e A335921 / \ / \ / \ / \ %e A335921 o o o o o o o o %e A335921 . %p A335921 g:= n-> `if`(n=0, 0, ilog2(n)+1): %p A335921 b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h, %p A335921 add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0)) %p A335921 end: %p A335921 T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0): %p A335921 a:= n-> add(T(n, k)*k, k=g(n)..n): %p A335921 seq(a(n), n=0..35); %t A335921 g[n_] := If[n == 0, 0, Floor@Log2[n] + 1]; %t A335921 b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h, %t A335921 Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]]; %t A335921 T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0]; %t A335921 a[n_] := Sum[T[n, k]*k, {k, g[n], n}]; %t A335921 Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Apr 26 2022, after _Alois P. Heinz_ *) %Y A335921 Cf. A083420, A316944, A335919, A335920, A335922. %K A335921 nonn %O A335921 0,3 %A A335921 _Alois P. Heinz_, Jun 29 2020