cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335922 Total number of internal nodes in all binary search trees of height n.

This page as a plain text file.
%I A335922 #22 Apr 26 2022 02:58:40
%S A335922 0,1,7,97,6031,8760337,8245932762607,3508518207942911995940881,
%T A335922 311594265746788494170059418351454897488270152687
%N A335922 Total number of internal nodes in all binary search trees of height n.
%C A335922 Empty external nodes are counted in determining the height of a search tree.
%H A335922 Alois P. Heinz, <a href="/A335922/b335922.txt">Table of n, a(n) for n = 0..12</a>
%H A335922 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Binary search tree</a>
%H A335922 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H A335922 <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F A335922 a(n) = Sum_{k=n..2^n-1} k * A335919(k,n) = Sum_{k=n..2^n-1} k * A335920(k,n).
%e A335922 a(2) = 7 = 2 + 3 + 2:
%e A335922 .
%e A335922          2        2        1
%e A335922         / \      / \      / \
%e A335922        1   o    1   3    o   2
%e A335922       / \      ( ) ( )      / \
%e A335922      o   o     o o o o     o   o
%e A335922 .
%p A335922 b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h,
%p A335922       add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0))
%p A335922     end:
%p A335922 T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0):
%p A335922 a:= k-> add(T(n, k)*n, n=k..2^k-1):
%p A335922 seq(a(n), n=0..10);
%t A335922 b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h,
%t A335922      Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]];
%t A335922 T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0];
%t A335922 a[k_] := Sum[T[n, k]*n, {n, k, 2^k - 1}];
%t A335922 Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Apr 26 2022, after _Alois P. Heinz_ *)
%Y A335922 Cf. A317012, A335919, A335920, A335921.
%K A335922 nonn
%O A335922 0,3
%A A335922 _Alois P. Heinz_, Jun 29 2020