cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335930 Decimal expansion of the arclength on y = sin(x) from (0,0) to (Pi,0).

This page as a plain text file.
%I A335930 #16 Nov 14 2024 08:23:02
%S A335930 3,8,2,0,1,9,7,7,8,9,0,2,7,7,1,2,0,1,7,9,0,4,7,6,2,0,8,2,1,7,1,4,4,3,
%T A335930 2,9,1,9,0,9,9,6,7,6,1,4,6,4,7,2,7,4,7,2,1,0,8,0,4,9,6,6,5,6,7,4,7,1,
%U A335930 9,5,8,0,1,2,1,4,3,2,9,9,2,1,0,6,6,1,8,1,0,8
%N A335930 Decimal expansion of the arclength on y = sin(x) from (0,0) to (Pi,0).
%C A335930 Also the arclength between consecutive points of intersection of y = sin(x) and y = cos(x).
%F A335930 From _Paolo Xausa_, Nov 14 2024: (Start)
%F A335930 Equals Pi/A062539 + A062539 = A053004 + A062539.
%F A335930 Equals A010466*A257407. (End)
%F A335930 Equals A105419/2 = 2*A256667. - _Hugo Pfoertner_, Nov 14 2024
%e A335930 arclength = 3.8201977890277120179047620821714432919099676146...
%t A335930 r = NIntegrate[Sqrt[1 + Cos[t]^2], {t, 0, Pi}, WorkingPrecision -> 200]
%t A335930 RealDigits[r][[1]]
%t A335930 First[RealDigits[Sqrt[8]*EllipticE[1/2], 10, 100]] (* _Paolo Xausa_, Nov 14 2024 *)
%Y A335930 Cf. A335928, A335929, A335931, A335932.
%Y A335930 Cf. A000796, A010466, A053004, A062539, A105419, A256667, A257407.
%K A335930 nonn,cons
%O A335930 1,1
%A A335930 _Clark Kimberling_, Jul 01 2020