cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335935 Infinitary pseudoperfect numbers (A306983) whose number of divisors is not a power of 2.

Original entry on oeis.org

60, 72, 90, 96, 150, 294, 360, 420, 480, 486, 504, 540, 600, 630, 660, 672, 726, 756, 780, 792, 864, 924, 936, 960, 990, 1014, 1020, 1050, 1056, 1092, 1120, 1140, 1152, 1170, 1176, 1188, 1224, 1248, 1344, 1350, 1368, 1380, 1386, 1400, 1428, 1440, 1470, 1500, 1530
Offset: 1

Views

Author

Amiram Eldar, Jun 30 2020

Keywords

Comments

Pseudoperfect numbers (A005835) whose number of divisors is a power of 2 (A036537) are also infinitary pseudoperfect numbers (A306983), since all of their divisors are infinitary.
First differs from A335198 at n = 77.

Examples

			60 is a term since its number of divisors is 12 which is not a power of 2, so not all of its divisors are infinitary, and it is the sum of its infinitary divisors: 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60.
		

Crossrefs

Subsequence of A005835 and A306983.

Programs

  • Mathematica
    idivs[x_] := If[x == 1, 1, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infpspQ[n_] := Module[{d = Most @ idivs[n], x}, Plus @@ d >= n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] > 0]; pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[2, 500], !pow2Q[DivisorSigma[0,#]] && infpspQ[#] &]