This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335948 #9 Jul 02 2020 12:56:52 %S A335948 1,1,1,12,1,1,1,4,1,1,240,1,2,1,1,1,48,1,6,1,1,1344,1,16,1,4,1,1,1, %T A335948 192,1,48,1,4,1,1,3840,1,48,1,24,1,3,1,1,1,1280,1,16,1,40,1,1,1,1, %U A335948 33792,1,256,1,32,1,8,1,4,1,1,1,3072,1,256,1,32,1,8,1,12,1,1 %N A335948 T(n, k) = denominator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n. %C A335948 See A335947 for formulas and references concerning the polynomials. %e A335948 First few polynomials are: %e A335948 b_0(x) = 1; %e A335948 b_1(x) = x; %e A335948 b_2(x) = -(1/12) + x^2; %e A335948 b_3(x) = -(1/4)*x + x^3; %e A335948 b_4(x) = (7/240) - (1/2)*x^2 + x^4; %e A335948 b_5(x) = (7/48)*x - (5/6)*x^3 + x^5; %e A335948 b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6; %e A335948 Triangle starts: %e A335948 1; %e A335948 1, 1; %e A335948 12, 1, 1; %e A335948 1, 4, 1, 1; %e A335948 240, 1, 2, 1, 1; %e A335948 1, 48, 1, 6, 1, 1; %e A335948 1344, 1, 16, 1, 4, 1, 1; %e A335948 1, 192, 1, 48, 1, 4, 1, 1; %e A335948 3840, 1, 48, 1, 24, 1, 3, 1, 1; %e A335948 1, 1280, 1, 16, 1, 40, 1, 1, 1, 1; %e A335948 33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1; %Y A335948 Cf. A335947 (numerators), A157780 (column 0), A033469 (column 0 even indices only). %K A335948 nonn,frac,tabl %O A335948 0,4 %A A335948 _Peter Luschny_, Jul 01 2020