cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335949 a(n) = denominator(b_n(x)), where b_n(x) are the polynomials defined in A335947.

Original entry on oeis.org

1, 1, 12, 4, 240, 48, 1344, 192, 3840, 1280, 33792, 3072, 5591040, 430080, 245760, 49152, 16711680, 983040, 522977280, 27525120, 1211105280, 173015040, 1447034880, 62914560, 22900899840, 4580179968, 1409286144, 469762048, 116769423360, 4026531840, 7689065201664
Offset: 0

Views

Author

Peter Luschny, Jul 01 2020

Keywords

Comments

The sequence can also be computed without reference to the Bernoulli polynomials (ultimately thanks to the von Staudt-Clausen theorem) by the method of Kellner and Sondow (2019). Compare the SageMath program.

Crossrefs

Programs

  • SageMath
    def A335949(n):
        a = set(prime_divisors(n + 1)) - set([2])
        b = (
            p
            for p in prime_range(3, (n + 2) // (2 + n % 2))
            if not p.divides(n + 1) and sum((n + 1).digits(base=p)) >= p
        )
        p = list(a.union(set(b)))
        return 4 ^ (n // 2) * mul(p)
    print([A335949(n) for n in range(31)])

Formula

a(n) = min {m | m*([x^k] b(n, x)) is an integer for all k = 0..n}.
The odd part of a(n) is squarefree (A000265).
a(n) and A144845(n) have the same odd prime factors.
a(n)/A144845(n) = 4^floor(n/2)/2 for n >= 1.
a(n)/rad(a(n)) = A158302(n+1), (rad=A007947).