This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335953 #8 Dec 16 2020 19:15:48 %S A335953 1,0,1,-1,0,1,0,-1,0,1,7,0,-2,0,1,0,7,0,-10,0,1,-31,0,7,0,-5,0,1,0, %T A335953 -31,0,49,0,-7,0,1,127,0,-124,0,98,0,-28,0,1,0,381,0,-124,0,294,0,-12, %U A335953 0,1,-2555,0,381,0,-310,0,98,0,-15,0,1 %N A335953 T(n, k) = numerator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)*2^k* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n. %H A335953 Peter H. N. Luschny, <a href="https://arxiv.org/abs/2009.06743">An introduction to the Bernoulli function</a>, arXiv:2009.06743 [math.HO], 2020. %e A335953 [0] 1 %e A335953 [1] 0, 1 %e A335953 [2] -1, 0, 1 %e A335953 [3] 0, -1, 0, 1 %e A335953 [4] 7, 0, -2, 0, 1 %e A335953 [5] 0, 7, 0, -10, 0, 1 %e A335953 [6] -31, 0, 7, 0, -5, 0, 1 %e A335953 [7] 0, -31, 0, 49, 0, -7, 0, 1 %e A335953 [8] 127, 0, -124, 0, 98, 0, -28, 0, 1 %e A335953 [9] 0, 381, 0, -124, 0, 294, 0, -12, 0, 1 %p A335953 Bcn := n -> 2^n*bernoulli(n, 1/2): %p A335953 Bcp := n -> add(binomial(n, k)*Bcn(k)*x^(n-k), k=0..n): %p A335953 polycoeff := p -> seq(numer(coeff(p, x, k)), k = 0..degree(p, x)): %p A335953 Trow := n -> polycoeff(Bcp(n)): seq(print(Trow(n)), n=0..9); %Y A335953 Cf. A285865 (denominators), A336454 (polynomial denominator), A336517, A001896, A001897. %K A335953 sign,tabl,frac %O A335953 0,11 %A A335953 _Peter Luschny_, Jul 25 2020