This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335966 #24 Oct 08 2020 03:13:26 %S A335966 1,2,2,2,2,6,2,2,2,4,4,4,4,14,2,2,2,4,4,4,4,12,4,4,4,8,8,8,8,30,2,2,2, %T A335966 4,4,4,4,12,4,4,4,8,8,8,8,28,4,4,4,8,8,8,8,24,8,8,8,16,16,16,16,62,2, %U A335966 2,2,4,4,4,4,12,4,4,4,8,8,8,8,28,4,4,4,8,8,8,8,24 %N A335966 a(n) is the number of odd terms in the n-th row of triangle A056939. %C A335966 The entries of Baxter triangles are binomial(n+1, k-1)*binomial(n+1, k)*binomial(n+1, k+1)/(binomial(n+1, 1)*binomial(n+1, 2)). %H A335966 Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, <a href="https://doi.org/10.1016/j.jcta.2010.03.017">Bijections for Baxter families and related objects</a>, J. Combin. Theory Ser. A, 118(3):993-1020, 2011. %F A335966 a(n) is even if n>=1. %F A335966 a(n) = n iff n is of the form 2^k-2. %F A335966 a(2^k-3) = 2^k-2. %e A335966 a(4)=2 as there are two odd numbers among 1,10,10,1. %t A335966 a[n_] := Count[Table[2 * Binomial[n, k] * Binomial[n + 1, k + 1] * Binomial[n + 2, k + 2]/((n - k + 1)^2 * (n - k + 2)), {k, 0, n}], _?OddQ]; Array[a, 100, 0] (* _Amiram Eldar_, Jul 02 2020 *) %o A335966 (PARI) T(n,m) = 2*binomial(n, m)*binomial(n + 1, m + 1)*binomial(n + 2, m + 2)/(( n - m + 1)^2*(n - m + 2)); \\ A056939 %o A335966 a(n) = sum(m=0, n, T(n,m) % 2); \\ _Michel Marcus_, Jul 02 2020 %Y A335966 Cf. A056939. %K A335966 nonn %O A335966 0,2 %A A335966 _Sen-Peng Eu_, Jul 01 2020