cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335966 a(n) is the number of odd terms in the n-th row of triangle A056939.

This page as a plain text file.
%I A335966 #24 Oct 08 2020 03:13:26
%S A335966 1,2,2,2,2,6,2,2,2,4,4,4,4,14,2,2,2,4,4,4,4,12,4,4,4,8,8,8,8,30,2,2,2,
%T A335966 4,4,4,4,12,4,4,4,8,8,8,8,28,4,4,4,8,8,8,8,24,8,8,8,16,16,16,16,62,2,
%U A335966 2,2,4,4,4,4,12,4,4,4,8,8,8,8,28,4,4,4,8,8,8,8,24
%N A335966 a(n) is the number of odd terms in the n-th row of triangle A056939.
%C A335966 The entries of Baxter triangles are binomial(n+1, k-1)*binomial(n+1, k)*binomial(n+1, k+1)/(binomial(n+1, 1)*binomial(n+1, 2)).
%H A335966 Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, <a href="https://doi.org/10.1016/j.jcta.2010.03.017">Bijections for Baxter families and related objects</a>, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
%F A335966 a(n) is even if n>=1.
%F A335966 a(n) = n iff n is of the form 2^k-2.
%F A335966 a(2^k-3) = 2^k-2.
%e A335966 a(4)=2 as there are two odd numbers among 1,10,10,1.
%t A335966 a[n_] := Count[Table[2 * Binomial[n, k] * Binomial[n + 1, k + 1] * Binomial[n + 2, k + 2]/((n - k + 1)^2 * (n - k + 2)), {k, 0, n}], _?OddQ]; Array[a, 100, 0] (* _Amiram Eldar_, Jul 02 2020 *)
%o A335966 (PARI) T(n,m) = 2*binomial(n, m)*binomial(n + 1, m + 1)*binomial(n + 2, m + 2)/(( n - m + 1)^2*(n - m + 2)); \\ A056939
%o A335966 a(n) = sum(m=0, n, T(n,m) % 2); \\ _Michel Marcus_, Jul 02 2020
%Y A335966 Cf. A056939.
%K A335966 nonn
%O A335966 0,2
%A A335966 _Sen-Peng Eu_, Jul 01 2020