cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335969 Sphenic numbers that are also the sum of three consecutive primes.

This page as a plain text file.
%I A335969 #25 Nov 25 2022 08:38:41
%S A335969 1015,1533,1645,2233,2737,2915,3219,3515,3745,3815,4301,4503,4565,
%T A335969 4623,4697,4921,5289,5621,6055,6095,6213,6251,6409,7055,7347,7657,
%U A335969 7847,8099,8455,8569,8687,8729,9499,9581,9955,10105,10153,10295,10735,11155,11297,11315,11803,12665,12805,12845
%N A335969 Sphenic numbers that are also the sum of three consecutive primes.
%C A335969 Intersection of A007304 and A034961.
%C A335969 Includes 15*p where p, 5*p-14, 5*p-2 and 5*p+16 are consecutive primes.  Dickson's conjecture implies there are infinitely many such terms. - _Robert Israel_, Nov 24 2022
%H A335969 Robert Israel, <a href="/A335969/b335969.txt">Table of n, a(n) for n = 1..10000</a>
%e A335969 1015 = A007304(140) = A034961(67), 1533 = A007304(226) = A034961(96).
%p A335969 P:= select(isprime, [seq(i,i=3..10^4,2)]):
%p A335969 P3:= P[1..-3] + P[2..-2] + P[3..-1]:
%p A335969 filter:= proc(t) local F; F:= ifactors(t)[2]; nops(F) = 3 and F[1,2]=1 and F[2,2] = 1 and F[3,2]=1 end proc:
%p A335969 select(filter, P3); # _Robert Israel_, Nov 24 2022
%t A335969 Intersection[ Select[Range[105, 40000,2], 3 == PrimeOmega[#] == PrimeNu[#] &], Total /@ Partition[Prime[Range[40000]], 3, 1]]
%Y A335969 Cf. A007304, A034961.
%K A335969 nonn
%O A335969 1,1
%A A335969 _Zak Seidov_, Jul 04 2020