This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335969 #25 Nov 25 2022 08:38:41 %S A335969 1015,1533,1645,2233,2737,2915,3219,3515,3745,3815,4301,4503,4565, %T A335969 4623,4697,4921,5289,5621,6055,6095,6213,6251,6409,7055,7347,7657, %U A335969 7847,8099,8455,8569,8687,8729,9499,9581,9955,10105,10153,10295,10735,11155,11297,11315,11803,12665,12805,12845 %N A335969 Sphenic numbers that are also the sum of three consecutive primes. %C A335969 Intersection of A007304 and A034961. %C A335969 Includes 15*p where p, 5*p-14, 5*p-2 and 5*p+16 are consecutive primes. Dickson's conjecture implies there are infinitely many such terms. - _Robert Israel_, Nov 24 2022 %H A335969 Robert Israel, <a href="/A335969/b335969.txt">Table of n, a(n) for n = 1..10000</a> %e A335969 1015 = A007304(140) = A034961(67), 1533 = A007304(226) = A034961(96). %p A335969 P:= select(isprime, [seq(i,i=3..10^4,2)]): %p A335969 P3:= P[1..-3] + P[2..-2] + P[3..-1]: %p A335969 filter:= proc(t) local F; F:= ifactors(t)[2]; nops(F) = 3 and F[1,2]=1 and F[2,2] = 1 and F[3,2]=1 end proc: %p A335969 select(filter, P3); # _Robert Israel_, Nov 24 2022 %t A335969 Intersection[ Select[Range[105, 40000,2], 3 == PrimeOmega[#] == PrimeNu[#] &], Total /@ Partition[Prime[Range[40000]], 3, 1]] %Y A335969 Cf. A007304, A034961. %K A335969 nonn %O A335969 1,1 %A A335969 _Zak Seidov_, Jul 04 2020