A335979 Number of partitions of n into exactly two parts with no decimal carries.
0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 4, 7, 9, 12, 14, 17, 19, 22, 24, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 3, 6, 10, 13, 17, 20, 24, 27, 31, 34, 3, 7, 11, 15, 19, 23
Offset: 0
Examples
a(31) = 3 because there are three partitions of 31 into exactly two parts with no decimal carries: 30 + 1, 21 + 10, and 20 + 11. a(100) = 0 because every partition of 100 into exactly two parts has at least one decimal carry.
Programs
-
Mathematica
Ceiling[(1/2) Times @@ (IntegerDigits[n, 10] + 1)] - 1
Formula
If n has digits n_1, n_2, ..., n_k and all digits n_i are even, then a(n) = (1/2)(n_1 + 1)(n_2 + 1)...(n_k + 1) - 1/2. Otherwise, a(n) = (1/2)(n_1 + 1)(n_2 + 1)...(n_k + 1) - 1. Equivalently, a(n) = ceiling((1/2)(n_1 + 1)(n_2 + 1)...(n_k + 1)) - 1 for all n.
a(n) = ceiling((1/2)*A089898(n)) - 1.
Comments