cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335988 Cubefull exponentially odd numbers: numbers whose prime factorization contains only odd exponents that are larger than 1.

Original entry on oeis.org

1, 8, 27, 32, 125, 128, 216, 243, 343, 512, 864, 1000, 1331, 1944, 2048, 2187, 2197, 2744, 3125, 3375, 3456, 4000, 4913, 6859, 7776, 8192, 9261, 10648, 10976, 12167, 13824, 16000, 16807, 17496, 17576, 19683, 24389, 25000, 27000, 29791, 30375, 31104, 32768, 35937
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2020

Keywords

Comments

This sequence is a permutation of A355038.
This sequence is also a permutation of the exponentially odd numbers (A268335) multiplied by the square of their squarefree kernel (A007947).
a(n)/rad(a(n)) is a permutation of the squares.
a(n)/rad(a(n))^2 is a permutation of the exponentially odd numbers.

Examples

			8 = 2^3 is a term since the exponent of its prime factor 2 is 3 which is odd and larger than 1.
		

Crossrefs

Intersection of A001694 and A268335.
Intersection of A036966 and A268335.
A355038 in ascending order.
A030078, A050997, A092759, A179665, A079395 and A138031 are subsequences.

Programs

  • Mathematica
    Join[{1}, Select[Range[10^5], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
  • Python
    from math import isqrt, prod
    from sympy import factorint
    def afind(N): # all terms up to limit N
        cands = (n**2*prod(factorint(n**2)) for n in range(1, isqrt(N//2)+2))
        return sorted(c for c in cands if c <= N)
    print(afind(4*10**4)) # Michael S. Branicky, Jun 16 2022

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.2312911... (A065487).