A335988 Cubefull exponentially odd numbers: numbers whose prime factorization contains only odd exponents that are larger than 1.
1, 8, 27, 32, 125, 128, 216, 243, 343, 512, 864, 1000, 1331, 1944, 2048, 2187, 2197, 2744, 3125, 3375, 3456, 4000, 4913, 6859, 7776, 8192, 9261, 10648, 10976, 12167, 13824, 16000, 16807, 17496, 17576, 19683, 24389, 25000, 27000, 29791, 30375, 31104, 32768, 35937
Offset: 1
Keywords
Examples
8 = 2^3 is a term since the exponent of its prime factor 2 is 3 which is odd and larger than 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Join[{1}, Select[Range[10^5], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
-
Python
from math import isqrt, prod from sympy import factorint def afind(N): # all terms up to limit N cands = (n**2*prod(factorint(n**2)) for n in range(1, isqrt(N//2)+2)) return sorted(c for c in cands if c <= N) print(afind(4*10**4)) # Michael S. Branicky, Jun 16 2022
Formula
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.2312911... (A065487).
Comments