cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335991 The moment generating function of the limiting distribution of the number of comparisons in quicksort can be written in the form M(t) = m(-2*t)/(exp(2*gamma*t)*Gamma(1 + 2*t)) for |t| < 1/2, where m(z) = Sum_{n >= 0} B(n)*z^n/n! for |z| < 1. This sequence gives the denominators of the rational numbers B(n) for n >= 0.

This page as a plain text file.
%I A335991 #32 Dec 22 2021 02:25:32
%S A335991 1,1,4,8,36,3456,172800,10368000,3810240000,177811200000,
%T A335991 9957427200000,75278149632000000,1912817782149120000000,
%U A335991 53023308921173606400000000,17742659631203112173568000000000,426249654980023566857797632000000000
%N A335991 The moment generating function of the limiting distribution of the number of comparisons in quicksort can be written in the form M(t) = m(-2*t)/(exp(2*gamma*t)*Gamma(1 + 2*t)) for |t| < 1/2, where m(z) = Sum_{n >= 0} B(n)*z^n/n! for |z| < 1. This sequence gives the denominators of the rational numbers B(n) for n >= 0.
%C A335991 Despite the fact that both the numerator and denominator in the formula  M(t) = m(-2*t)/(exp(2*gamma*t)*Gamma(1 + 2*t)) each have a Taylor expansion around t = 0 with a radius of convergence equal to 1/2, the moment generating function M(t) has a Taylor expansion around t = 0 with an infinite radius of convergence. This was proved in Rösler (1991).
%C A335991 The formula for M(t) appears as Theorem 6.1 in Tan and Hadjicostas (1993) and derives from the work of Hennequin (1991). Hennequin conjectured a cumulant formula for the limiting distribution of the number of comparisons in quicksort in his 1989 paper, and he proved it in his 1991 thesis.
%C A335991 The numbers (B(n): n >= 0), with B(0) = 1 and B(0) = 0, are given (for p >= 0) by the recurrence
%C A335991 Sum_{r=0..p} Stirling1(p+2, r+1)*B(p-r)/(p-r)! + Sum_{r=0..p} F(r)*F(p-r) = 0, where F(r) = Sum_{i=0..r} Stirling1(r+1,i+1)*G(r-i) and G(k) = Sum_{a=0..k} (-1)^a*B(k-a)/(a!*(k-a)!*2^a).
%C A335991 The numbers A(n) = L_n(B(1),...,B(n)) = A330852(n)/A330860(n), where L_n(x_1,...,x_n) are the logarithmic polynomials of Bell, appear in Hennequin's cumulant formula.
%C A335991 Hoffman and Kuba (2019, 2020) gave an alternative proof of Hennequin's cumulant formula and gave an alternative calculation for the constants (-2)^n*A(n), which they denote by a_n. See also Finch (2020).
%C A335991 Hoffman and Kuba (2019-2020, Proposition 17) express the constants c(n) = B(n)*(-2)^n = A329001(n)/A330876(n) in terms of "tiered binomial coefficients". In terms of the constants c(n), the moment generating function equals M(t) = Sum_{n >= 0} (c(n)*t^n/n!)/(exp(2*gamma*t)*Gamma(1 + 2*t)) for |t| < 1/2.
%C A335991 Tan and Hadjicostas (1993) proved that lim_{n -> infinity} B(n)/n! = nu, where nu = 0.589164... (approximately). Also, M(-1/2) = nu*exp(gamma), where gamma = A001620 (Euler's constant).
%D A335991 Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991), p. 83.
%H A335991 James A. Fill and Svante Janson, <a href="https://doi.org/10.1007/978-3-0348-8405-1_5">Smoothness and decay properties of the limiting Quicksort density function</a>, In: D. Gardy and A. Mokkadem (eds), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 53-64.
%H A335991 James A. Fill and Svante Janson, <a href="https://doi.org/10.1016/S0196-6774(02)00216-X">Quicksort asymptotics</a>, Journal of Algorithms, 44(1) (2002), 4-28.
%H A335991 Steven Finch, <a href="https://arxiv.org/abs/2002.02809">Recursive PGFs for BSTs and DSTs</a>, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives the constants a_s = (-2)^s*A(s) for s >= 2. He also calculates c(2) - c(8), where c(n) = B(n)*(-2)^n.]
%H A335991 P. Hennequin, <a href="http://www.numdam.org/article/ITA_1989__23_3_317_0.pdf">Combinatorial analysis of the quicksort algorithm</a>, Informatique théoretique et applications, 23(3) (1989), 317-333.
%H A335991 M. E. Hoffman and M. Kuba, <a href="https://arxiv.org/abs/1906.08347">Logarithmic integrals, zeta values, and tiered binomial coefficients</a>, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They study the constants a_s = (-2)^s*A(s) = (-2)^s*L_n(B(1),...,B(s)) = (-2)^s*A330852(s)/A330860(s) for s >= 2. They also study the constants c(n) = B(n)*(-2)^n = A329001(n)/A330876(n).]
%H A335991 Mireille Régnier, <a href="http://www.numdam.org/item?id=ITA_1989__23_3_335_0">A limiting distribution for quicksort</a>, Informatique théorique et applications, 23(3) (1989), 335-343.
%H A335991 Uwe Rösler, <a href="http://www.numdam.org/item?id=ITA_1991__25_1_85_0">A limit theorem for quicksort</a>, Informatique théorique et applications, 25(1) (1991), 85-100. [He proved that M(t) has a Taylor expansion around zero with an infinite radius of convergence.]
%H A335991 Kok Hooi Tan and Petros Hadjicostas, <a href="/A330852/a330852.pdf">Density and generating functions of a limiting distribution in quicksort</a>, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see pp. 8-11.
%H A335991 Kok Hooi Tan and Petros Hadjicostas, <a href="https://doi.org/10.1016/0167-7152(94)00209-Q">Some properties of a limiting distribution in Quicksort</a>, Statistics and Probability Letters, 25(1) (1995), 87-94.
%H A335991 Vytas Zacharovas, <a href="https://arxiv.org/abs/1605.04018">On the exponential decay of the characteristic function of the quicksort distribution</a>, arXiv:1605.04018 [math.CO], 2016. [The author studies the tail of phi(t) = M(i*t), where i = sqrt(-1).]
%F A335991 a(n) = denominator(B(n)), where B(n) = (n-1)!*Sum_{k=0..n-1} A(k+1)*B(n-1-k)/(k!*(n-1-k)!) for n >= 1 with B(0) = 1 and A(n) = A330852(n)/A330860(n).
%F A335991 Also, B(n) = c(n)/(-2)^n = A329001(n)/A330876(n)/(-2)^n.
%e A335991 The first few fractions are 1/1, 0/1, 7/4, 19/8, 565/36, 229621/3456, 74250517/172800, 30532750703/10368000, 90558126238639/3810240000, ... = A335990/A335991.
%p A335991 # For a fast Maple program for the calculation of the numbers (B(n): n >= 0), see A330852.
%Y A335991 Cf. A001620, A063090, A067699, A093418,  A096620, A115107, A288964, A288965, A288970, A288971, A329001 (numerators of B(n)*(-2)^n), A330852 (numerators of A(n)), A330860 (denominators of A(n)), A330876 (denominators of B(n)*(-2)^n), A335990 (numerators of B(n)).
%K A335991 nonn,frac
%O A335991 0,3
%A A335991 _Petros Hadjicostas_, Jul 03 2020