A336005 a(n) is the number of terms in the mixed binary-ternary representation of n. See Comments.
1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 2, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 2, 1, 2, 2, 2, 2, 3
Offset: 1
Examples
7 = 6 + 1, so a(7) = 2. 45 = 32 + 9 + 4, so a(45) = 3.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 20; zz = 100; b1 = Sort[Table[2^k, {k, 0, z}], Greater]; b2 = Sort[Union[Table[3^k, {k, 0, z}], Table[2*3^k, {k, 0, z}]], Greater]; b = Sort[Union[b1, b2], Greater]; g1 = Map[{#, DeleteCases[b1 Reap[ FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, b1]][[2, 1]], 0]} &, Range[zz]]; m1 = Map[Length[#[[2]]] &, g1]; g2 = Map[{#, DeleteCases[b2 Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, b2]][[2, 1]], 0]} &, Range[zz]]; m2 = Map[Length[#[[2]]] &, g2]; g = Map[{#, DeleteCases[ b Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, b]][[2, 1]], 0]} &, Range[zz]] m = Map[Length[#[[2]]] &, g]; m1 (* # terms in binary representation *) m2 (* # terms in ternary representation *) m (* # terms in mixed base representation *) (* A336005 *)
-
Python
from itertools import count, takewhile N = 10**6 B1 = list(takewhile(lambda x: x[0] <= N, ((2**i, 2) for i in count(0)))) B21 = list(takewhile(lambda x: x[0] <= N, ((3**i, 3) for i in count(0)))) B22 = list(takewhile(lambda x: x[0] <= N, ((2*3**i, 3) for i in count(0)))) B = sorted(set(B1 + B21 + B22), reverse=True) def gbt(n, B): # greedy binary-ternary representation r = [] for t, b in B: if t <= n: r.append(t) n -= t if n == 0: return r def a(n): return len(gbt(n, B)) print([a(n) for n in range(1, 87)]) # Michael S. Branicky, Jan 06 2022
Comments