A336006 a(n) = the least k such that the mixed binary-ternary representation of k has n terms. See Comments.
1, 5, 14, 46, 127, 383, 1407, 3594, 11786, 31469, 97005, 451299, 982740, 3079892, 7862861, 24640077, 110733519, 244951247, 1019792225, 3344315159, 13804668362, 48164406730, 185603360202, 468032896683, 1567544524459, 4109410352788, 12905503374996, 58659088284918
Offset: 1
Examples
1 = 1 (1 term); 5 = 4 + 1 (2 terms); 14 = 9 + 4 + 1 (3 terms); 46 = 32 + 9 + 4 + 1 (4 terms); 127 = 81 + 32 + 9 + 4 + 1 (5 terms).
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..2030
- Michael S. Branicky, Proof of formula
Programs
-
Mathematica
z = 20; zz = 100000; b1 = Sort[Table[2^k, {k, 0, z}], Greater]; b2 = Sort[Union[Table[3^k, {k, 0, z}], Table[2*3^k, {k, 0, z}]], Greater]; b = Sort[Union[b1, b2], Greater]; g1 = Map[{#, DeleteCases[b1 Reap[ FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, b1]][[2, 1]], 0]} &, Range[zz]]; m1 = Map[Length[#[[2]]] &, g1]; g2 = Map[{#, DeleteCases[ b2 Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, b2]][[2, 1]], 0]} &, Range[zz]]; m2 = Map[Length[#[[2]]] &, g2]; g = Map[{#, DeleteCases[b Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, b]][[2, 1]], 0]} &, Range[zz]]; m = Map[Length[#[[2]]] &, g]; (* Peter J. C. Moses, Jul 05 2020 *) Table[First[Flatten[Position[m, k]]], {k, 1, 11}]
-
Python
from itertools import count, takewhile, islice def big_greedy(k, B, start=0): idx = start while idx < len(B) and B[idx] <= k: idx += 1 return B[idx - 1] def agen(limit=10**1001): an, idx, t = 1, 0, 2 B1 = list(takewhile(lambda x: x <= limit, (2**i for i in count(0)))) B21 = list(takewhile(lambda x: x <= limit, (3**i for i in count(0)))) B22 = list(takewhile(lambda x: x <= limit, (2*3**i for i in count(0)))) B = sorted(set(B1 + B21 + B22)) while an <= limit: yield an while t != big_greedy(an+t, B, start=idx): idx, t = idx+1, B[idx+1] an += t print(list(islice(agen(), 28))) # Michael S. Branicky, Jan 06 2022
Formula
a(n+1) = a(n) + t, where t is the least element in B such that the largest element of B in the interval (a(n), a(n) + t) is t; see link for proof. - Michael S. Branicky, Jan 06 2022
Extensions
a(12) and beyond from Michael S. Branicky, Jan 06 2022
Comments