A336007 Numbers whose mixed Zeckendorf-Lucas representation is not a Zeckendorf or Lucas representation. See Comments.
17, 25, 28, 38, 41, 45, 46, 52, 53, 59, 62, 66, 67, 72, 73, 74, 75, 81, 82, 84, 85, 86, 93, 96, 100, 101, 106, 107, 108, 109, 114, 117, 118, 119, 120, 121, 122, 128, 129, 131, 132, 133, 136, 137, 138, 139, 140, 148, 151, 155, 156, 161, 162, 163, 164, 169
Offset: 1
Examples
17 = 13 + 4; 25 = 21 + 4; 28 = 21 + 7.
Programs
-
Mathematica
fibonacciQ[n_] := IntegerQ[Sqrt[5 n^2 + 4]] || IntegerQ[Sqrt[5 n^2 - 4]]; Attributes[fibonacciQ] = {Listable}; lucasQ[n_] := IntegerQ[Sqrt[5 n^2 + 20]] || IntegerQ[Sqrt[5 n^2 - 20]]; Attributes[lucasQ] = {Listable}; s = Reverse[Union[Flatten[Table[{Fibonacci[n + 1], LucasL[n - 1]}, {n, 1, 22}]]]]; u = Map[#[[1]] &, Select[Map[{#[[1]], {Apply[And, fibonacciQ[#[[2]]]], Apply[And, lucasQ[#[[2]]]]}} &, Map[{#, DeleteCases[ s Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], 0]} &, Range[500]]], #[[2]] == {False, False} &]] (* Peter J. C. Moses, Jun 14 2020 *)
Comments