This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336019 #22 Jan 17 2025 11:54:30 %S A336019 7,7,11,9,7,17,7,7,11,9,7,17,7,7,11,9,7,17,7,7,11,9,7,17,7,7,11,9,7, %T A336019 17,7,7,11,9,7,23,7,7,11,9,7,17,7,7,11,9,7,23,7,7,11,9,7,17,7,7,11,9, %U A336019 7,17,7,7,11,9,7,17,7,7,11,9,7,17,7,7,11,9,7,17,7,7 %N A336019 a(n) is the smallest integer k (k>=2) such that 13...3 (1 followed by n 3's) mod k is even. %C A336019 More sequences can be generated by replacing the digit 1 by any integers of the form 3x+1. However, the sequence won't be as interesting if the following digits (the 3's) are replaced by any other digits. %H A336019 Antti Karttunen, <a href="/A336019/b336019.txt">Table of n, a(n) for n = 1..20004</a> %F A336019 I have proved the following properties: %F A336019 For n=12x+1, a(n)=7. %F A336019 For n=12x+2, a(n)=7. %F A336019 For n=12x+3, a(n)=11. %F A336019 For n=12x+4, a(n)=9. %F A336019 For n=12x+5, a(n)=7. %F A336019 For n=12x+6, a(n)=17. %F A336019 For n=12x+7, a(n)=7. %F A336019 For n=12x+8, a(n)=7. %F A336019 For n=12x+9, a(n)=11. %F A336019 For n=12x+10, a(n)=9. %F A336019 For n=12x+11, a(n)=7. %F A336019 For n=12x, a(n) can be 17, 19, 23 or 25. %e A336019 a(5)=7 because %e A336019 133333 mod 2 = 1 %e A336019 133333 mod 3 = 1 %e A336019 133333 mod 4 = 1 %e A336019 133333 mod 5 = 3 %e A336019 133333 mod 6 = 1 %e A336019 133333 mod 7 = 4, which is the first time the result is even. %o A336019 (Python) %o A336019 n=1 %o A336019 a=13 %o A336019 while n<=1000: %o A336019 c=2 %o A336019 while True: %o A336019 if (a%c)%2==1: %o A336019 c=c+1 %o A336019 else: %o A336019 print(c,end=", ") %o A336019 break %o A336019 n=n+1 %o A336019 a=10*a+3 %o A336019 (PARI) f(n) = (4*10^n-1)/3; \\ A097166 %o A336019 a(n) = my(k=2); while ((f(n) % k) % 2, k++); k; \\ _Michel Marcus_, Jul 05 2020 %Y A336019 Cf. A097166. %K A336019 easy,nonn,base %O A336019 1,1 %A A336019 _Yuan-Hao Huang_, Jul 05 2020