This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336064 #12 Jul 14 2020 03:38:39 %S A336064 2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29, %T A336064 30,31,33,34,35,36,37,38,39,41,42,43,44,46,47,48,50,51,52,53,54,55,57, %U A336064 58,59,60,61,62,65,66,67,68,69,70,71,72,73,74,76,77,78,79 %N A336064 Numbers divisible by the maximal exponent in their prime factorization (A051903). %C A336064 The asymptotic density of this sequence is A336065 = 0.848957... (Schinzel and Šalát, 1994). %D A336064 József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331. %H A336064 Amiram Eldar, <a href="/A336064/b336064.txt">Table of n, a(n) for n = 1..10000</a> %H A336064 Andrzej Schinzel and Tibor Šalát, <a href="https://dml.cz/handle/10338.dmlcz/136624">Remarks on maximum and minimum exponents in factoring</a>, Mathematica Slovaca, Vol. 44, No. 5 (1994), pp. 505-514. %e A336064 4 = 2^2 is a term since A051903(4) = 2 is a divisor of 4. %t A336064 H[1] = 0; H[n_] := Max[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, H[#]] &] %o A336064 (PARI) isok(m) = if (m>1, (m % vecmax(factor(m)[,2])) == 0); \\ _Michel Marcus_, Jul 08 2020 %Y A336064 Cf. A051903, A124184, A336065. %Y A336064 A005117 (except for 1) is subsequence. %Y A336064 Similar sequences: A033950, A005349, A006446, A074946, A075592, A007694, A112249, A336063. %K A336064 nonn %O A336064 1,1 %A A336064 _Amiram Eldar_, Jul 07 2020