This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336070 #42 Jan 18 2025 09:08:35 %S A336070 1,1,2,6,23,106,567,3440,23286,173704,1414102,12465119,118205428, %T A336070 1199306902,12958274048,148502304614,1798680392716,22953847041950, %U A336070 307774885768354,4325220458515307,63563589415836532,974883257009308933,15575374626562632462,258780875395778033769,4464364292401926006220 %N A336070 Number of inversion sequences avoiding the vincular pattern 10-0 (or 10-1). %C A336070 From _Joerg Arndt_, Jan 20 2024: (Start) %C A336070 a(n) is the number of weak ascent sequences of length n. %C A336070 A weak ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) counts the weak ascents d(j) >= d(j-1) of its argument. %C A336070 The number of length-n weak ascent sequences with maximal number of weak ascents is A000108(n). %C A336070 (End) %H A336070 Alois P. Heinz, <a href="/A336070/b336070.txt">Table of n, a(n) for n = 0..400</a> %H A336070 Juan S. Auli and Sergi Elizalde, <a href="https://arxiv.org/abs/2003.11533">Wilf equivalences between vincular patterns in inversion sequences</a>, arXiv:2003.11533 [math.CO], 2020. See p. 5, Table 1. Gives terms 1-10. %H A336070 Beata Benyi, Anders Claesson, and Mark Dukes, <a href="https://arxiv.org/abs/2111.03159">Weak ascent sequences and related combinatorial structures</a>, arXiv:2111.03159 [math.CO], (4-November-2021). %e A336070 From _Joerg Arndt_, Jan 20 2024: (Start) %e A336070 There are a(4) = 23 weak ascent sequences (dots for zeros): %e A336070 1: [ . . . . ] %e A336070 2: [ . . . 1 ] %e A336070 3: [ . . . 2 ] %e A336070 4: [ . . . 3 ] %e A336070 5: [ . . 1 . ] %e A336070 6: [ . . 1 1 ] %e A336070 7: [ . . 1 2 ] %e A336070 8: [ . . 1 3 ] %e A336070 9: [ . . 2 . ] %e A336070 10: [ . . 2 1 ] %e A336070 11: [ . . 2 2 ] %e A336070 12: [ . . 2 3 ] %e A336070 13: [ . 1 . . ] %e A336070 14: [ . 1 . 1 ] %e A336070 15: [ . 1 . 2 ] %e A336070 16: [ . 1 1 . ] %e A336070 17: [ . 1 1 1 ] %e A336070 18: [ . 1 1 2 ] %e A336070 19: [ . 1 1 3 ] %e A336070 20: [ . 1 2 . ] %e A336070 21: [ . 1 2 1 ] %e A336070 22: [ . 1 2 2 ] %e A336070 23: [ . 1 2 3 ] %e A336070 (End) %p A336070 b:= proc(n, i, t) option remember; `if`(n=0, 1, %p A336070 add(b(n-1, j, t+`if`(j>=i, 1, 0)), j=0..t+1)) %p A336070 end: %p A336070 a:= n-> b(n, -1$2): %p A336070 seq(a(n), n=0..25); # _Alois P. Heinz_, Jan 23 2024 %t A336070 b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, j, t + If[j >= i, 1, 0]], {j, 0, t + 1}]]; %t A336070 a[n_] := b[n, -1, -1]; %t A336070 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jan 18 2025, after _Alois P. Heinz_ *) %o A336070 (PARI) \\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference %o A336070 N=40; %o A336070 M=matrix(N,N,r,c,-1); \\ memoization %o A336070 a(n,k)= %o A336070 { %o A336070 if ( n==0 && k==0, return(1) ); %o A336070 if ( k==0, return(0) ); %o A336070 if ( n==0, return(0) ); %o A336070 if ( M[n,k] != -1 , return( M[n,k] ) ); %o A336070 my( s ); %o A336070 s = sum( i=0, n, sum( j=0, k-1, %o A336070 (-1)^j * binomial(k-j,i) * binomial(i,j) * a( n-i, k-j-1 )) ); %o A336070 M[n,k] = s; %o A336070 return( s ); %o A336070 } %o A336070 for (n=0, N, print1( sum(k=1,n,a(n,k)),", "); ); %o A336070 \\ print triangle a(n,k), see A369321: %o A336070 \\ for (n=0, N, for(k=0,n, print1(a(n,k),", "); ); print();); %o A336070 \\ _Joerg Arndt_, Jan 20 2024 %Y A336070 Cf. A000079, A000108, A000110, A022493, A091768, A102038, A113227, A263777, A328441, A336071, A336072. %Y A336070 Row sums of A369321. %K A336070 nonn %O A336070 0,3 %A A336070 _Michael De Vlieger_, Jul 07 2020 %E A336070 a(0)=1 prepended and more terms from _Joerg Arndt_, Jan 20 2024