This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A336087 #14 Sep 02 2020 10:39:49 %S A336087 0,1,0,1,0,0,2,1,0,0,4,1,0,0,0,9,3,1,0,0,0,20,6,1,0,0,0,0,48,16,3,1,0, %T A336087 0,0,0,115,37,7,1,0,0,0,0,0,286,96,18,3,1,0,0,0,0,0,719,239,44,7,1,0, %U A336087 0,0,0,0,0,1842,622,117,19,3,1,0,0,0,0,0,0,4766,1607,299,46,7,1,0,0,0,0,0,0,0,12486,4235,793,124 %N A336087 Triangle read by rows: T(n, k) is the number of forests with n (unlabeled) nodes and k planted trees. %C A336087 The number of planted trees with n+1 nodes is equal to the number of rooted trees with n nodes. [See Palmer-Schwenk link, pp. 115]. %H A336087 E. M. Palmer and A. J. Schwenk, <a href="https://doi.org/10.1016/0095-8956(79)90073-X">On the number of trees in a random forest</a>, J. Combin. Theory, B 27 (1979), 109-121. %H A336087 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A336087 T(1,1) = 0, if n >= 2 T(n,k) = Sum_{P_1(n,k)}( Product_{j=2..n} binomial(A000081(j-1) + c_j - 1, c_j) ), where P_1(n, k) is the set of the partitions of n with k parts greater than one: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0. %F A336087 If k > floor(n/2), T(n,k) = 0; otherwise T(n,k) = A033185(n-k, k). %e A336087 Triangle T(n,k) %e A336087 n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A336087 1 0; %e A336087 2 1, 0; %e A336087 3 1, 0, 0; %e A336087 4 2, 1, 0, 0; %e A336087 5 4, 1, 0, 0, 0; %e A336087 6 9, 3, 1, 0, 0, 0; %e A336087 7 20, 6, 1, 0, 0, 0, 0; %e A336087 8 48, 16, 3, 1, 0, 0, 0, 0; %e A336087 9 115, 37, 7, 1, 0, 0, 0, 0, 0; %e A336087 10 286, 96, 18, 3, 1, 0, 0, 0, 0, 0; %e A336087 11 719, 239, 44, 7, 1, 0, 0, 0, 0, 0, 0; %e A336087 12 1842, 622, 117, 19, 3, 1, 0, 0, 0, 0, 0, 0; %e A336087 13 4766, 1607, 299, 46, 7, 1, 0, 0, 0, 0, 0, 0, 0; %e A336087 14 12486, 4235, 793, 124, 19, 3, 1, 0, 0, 0, 0, 0, 0, 0; %e A336087 15 32973, 11185, 2095, 320, 47, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0; %e A336087 ... %e A336087 n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A336087 A005199(6) = Sum_{k=1..6}( k * T(6,k) ) = 1*9 + 2*3 +3*1 = 18. %o A336087 (PARI) g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1; %o A336087 for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1])); f[m+1] }; %o A336087 global(max_n = 130); A000081 = vector(max_n, n, g(n-1)); %o A336087 F(n,t)={my(s=0, D, c, P_1); if(n==1,return(0)); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1))); %o A336087 s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k])),[2,n],[t,t]); s}; %Y A336087 Cf. A000081, A005199, A005198 (row sums), A033185. %K A336087 nonn,tabl %O A336087 1,7 %A A336087 _Washington Bomfim_, Jul 08 2020